Những câu hỏi liên quan
TA
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
AM
Xem chi tiết
H24
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

Bình luận (0)
DV
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.

Bình luận (0)
KN
Xem chi tiết
H24
21 tháng 4 2020 lúc 14:32

Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)

\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)

Đến đây t cần chứng minh:

 \(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)

Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)

\(\Rightarrow x+y+z=1\)

(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)

Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)

Nhứng phần kia tương tự

\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)

Lần trước làm không đúng hy vọng bây giờ gỡ lại được

Bình luận (0)
 Khách vãng lai đã xóa
H24
21 tháng 4 2020 lúc 15:01

nub

Bạn suy ra dòng 8 mk chưa hiểu, giải kĩ cho mk đc ko

Bình luận (0)
 Khách vãng lai đã xóa
H24
21 tháng 4 2020 lúc 15:22

À hiểu r nha bạn,

Bài làm thật xuất sắc!

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
13 tháng 8 2016 lúc 20:33

Hỏi đáp Toán

Bình luận (0)
HN
13 tháng 8 2016 lúc 20:34

Hình như đề bài có vấn đề : thừa đk ab + bc + ac  = abc

ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\) 

Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)

 

Bình luận (4)
HN
13 tháng 8 2016 lúc 20:35

Nếu thay dấu > thành >= thì ta có cách giải khác

Bình luận (2)
LH
Xem chi tiết
BB
Xem chi tiết
H24
27 tháng 4 2021 lúc 20:49

Bạn học delta chưa nhỉ, HSG chắc chắn là học rồi:vv

Bình luận (4)
H24
27 tháng 4 2021 lúc 21:04

undefined

Bình luận (0)
NT
Xem chi tiết
NT
23 tháng 8 2017 lúc 15:00

bđt phụ sai mà cũng ko đc chuẩn hóa

Bình luận (0)
WR
23 tháng 8 2017 lúc 18:38

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

Bình luận (0)
TN
23 tháng 8 2017 lúc 19:40

SOS cho khỏe :v 

WLOG \(a\ge b\ge c\)

Áp dụng BĐT AM-GM ta có:

\(b^2Σ_{cyc}\left(a^3+\frac{4ab}{a^2+b^2}-3\right)=b^2\left(Σ_{cyc}(a^3-abc)-2Σ_{cyc}\left(1-\frac{2ab}{a^2+b^2}\right)\right)\)

\(=b^2Σ_{cyc}(a-b)^2\left(\frac{a+b+c}{2}-\frac{2}{a^2+b^2}\right)=\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)(a^2+b^2)-4abc)}{a^2+b^2}\)

\(\ge\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)2ab-4abc)}{a^2+b^2}=b^2Σ_{cyc}\frac{(a-b)^2ab(a+b-c)}{a^2+b^2}\)

\(\ge\frac{b^2(a-c)^2ac(a+c-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b+c-a)}{b^2+c^2}\)

\(\ge\frac{a^2(b-c)^2ac(a-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b-a)}{b^2+c^2}\)

\(=\frac{abc^3(a+b)(b-c)^2(a-b)^2}{(a^2+c^2)(b^2+c^2)}\ge0\) (đúng :v)

Bình luận (0)