Những câu hỏi liên quan
NT
Xem chi tiết
H24
22 tháng 8 2017 lúc 5:35

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

Bình luận (0)
NT
Xem chi tiết
KS
16 tháng 10 2019 lúc 20:42

Áp dụng BĐT Cauchy ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VP\le4\left(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng BĐT Cauchy ta có : \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\frac{1}{2}\right)^2\ge2.2\sqrt{ab}.\frac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có ;

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2)  suy ra

\(VT\ge VP\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt !!!

Bình luận (0)
TH
Xem chi tiết
KS
3 tháng 11 2019 lúc 17:24

Áp dụng bđt Cauchy ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VP\le4\left(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng bđt Cauchy ta cso :
\(a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\frac{1}{2}\right)^2\ge2.2\sqrt{ab}.\frac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2) 

\(VT\ge VP\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
6 tháng 5 2021 lúc 17:18

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

Bình luận (0)
NL
6 tháng 5 2021 lúc 17:20

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
13 tháng 5 2021 lúc 15:36

a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`

Bình luận (0)
TD
25 tháng 3 2022 lúc 20:04

a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12

 

Bình luận (0)
H24
Xem chi tiết
NL
15 tháng 7 2020 lúc 11:12

a/ \(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b/ \(\frac{a}{a+b^2}=\frac{a}{a\left(a+b+c\right)+b^2}=\frac{a}{a^2+b^2+a\left(b+c\right)}\le\frac{a}{2ab+a\left(b+c\right)}=\frac{1}{b+b+b+c}\)

\(\Rightarrow\frac{a}{a+b^2}=\frac{1}{b+b+b+c}\le\frac{1}{16}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{3}{b}+\frac{1}{c}\right)\)

Tương tự: \(\frac{b}{b+c^2}\le\frac{1}{16}\left(\frac{3}{c}+\frac{1}{a}\right)\) ; \(\frac{c}{c+a^2}\le\frac{1}{16}\left(\frac{3}{a}+\frac{1}{c}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
ND
Xem chi tiết
H24
1 tháng 11 2018 lúc 20:48

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+c^2b+c^2a=0\)

\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

So ez

....

Bình luận (0)
BD
Xem chi tiết
H24
5 tháng 12 2019 lúc 18:57

Lời giải

Ta có: \(\left(a+b+\frac{1}{4}\right)^2=\frac{1}{16}\left(4a+4b-1\right)^2+\left(a+b\right)\ge a+b\)

Tương tự: \(\left(b+c+\frac{1}{4}\right)^2\ge b+c;\left(c+a+\frac{1}{4}\right)^2\ge c+a\)

Như vậy: \(L.H.S\left(VT\right)\ge\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=\left(\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}}\right)+\left(\frac{1}{\frac{1}{b}}+\frac{1}{\frac{1}{c}}\right)+\left(\frac{1}{\frac{1}{c}}+\frac{1}{\frac{1}{a}}\right)\)

\(\ge4\left(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\right)=R.H.S\left(VP\right)\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{8}\). Ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
H24
5 tháng 12 2019 lúc 19:29

khác cách tth xíu

Ta có:

\(VP=\Sigma_{cyc}\frac{4}{\frac{1}{a}+\frac{1}{b}}\le\Sigma_{cyc}\frac{4}{\frac{4}{a+b}}=2\left(a+b+c\right)\)

Gio ta di chung minh

\(VT\ge2\left(a+b+c\right)\)

Ta lai co:

\(VT=\Sigma_{cyc}\left(a+b+\frac{1}{4}\right)^2\ge\frac{\left[2\left(a+b+c\right)+\frac{3}{4}\right]^2}{3}\)

Chung minh

\(\frac{\left[2\left(a+b+c\right)+\frac{3}{4}\right]^2}{3}\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left[2\left(a+b+c\right)-\frac{3}{4}\right]^2\ge0\) (đúng)

Dau '=' xay ra khi \(a=b=c=\frac{1}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
5 tháng 12 2019 lúc 20:19

Nyatmax thực ra về ý tưởng cũng không khác là mấy:D

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
LD
26 tháng 11 2020 lúc 19:25

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

Bình luận (0)
 Khách vãng lai đã xóa