Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A, D ∈ BC. a) Tính DB/DC? b) Kẻ đường cao AH (H ∈ BC). Chứng minh rằng: AH/CH=AB/CA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A, D ∈ BC. a) Tính DB/DC? b) Kẻ đường cao AH (H ∈ BC). Chứng minh rằng: AH/CH=AB/CA
a) Do AD là phân giác của ∠A
⇒ DB/DC = 8/6 = 4/3
b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:
∠HAB = ∠HCA (cùng phụ ∠B)
⇒ ∆AHB ∽ ∆CHA (g-g)
⇒ AH/CH = AB/CA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A, D ∈ BC. a) Tính DB/DC? b) Kẻ đường cao AH (H ∈ BC). Chứng minh rằng: AH/CH=AB/CA
a) Do AD là phân giác của ∠A
⇒ DB/DC = 8/6 = 4/3
b) Xét hai tam giác vuông: ∆AHB và ∆CHA có:
∠HAB = ∠HCA (cùng phụ ∠B)
⇒ ∆AHB ∽ ∆CHA (g-g)
⇒ AH/CH = AB/CA
a: DB/DC=AB/AC=4/3
b: Sửa đề: AH/CA=AB/BC
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)
=>AH*BC=AB*AC
=>AH/AC=AB/CB
Tính thể tích hình lăng trụ đứng có chiều cao 10 cm và mặt đáy là hình thoi có hai đường chéo là 8 cm , 6 cm
Diện tích đáy:
\(S=\dfrac{8.6}{2}=24\left(cm^2\right)\)
Thể tích hình lăng trụ:
\(V=S.h=24.10=240\left(cm^3\right)\)
Cho ∆ABC vuông tại A , AC=8cm , BC =12cm . Kẻ tia Cx vuông góc BC . Trên tia Cx lấy điểm D sao cho BD = 18 cm . Chứng minh rằng ∆ ABC đồng dạng ∆CDB
∆ABC vuông tại A
⇒ BC² = AB² + AC² (Pytago)
⇒ AB² = BC² - AC²
= 12² - 8²
= 80
⇒ AB = \(4\sqrt{5}\) (cm)
∆CDB vuông tại C
⇒ BD² = CD² + BC² (Pytago)
⇒ CD² = BD² - BC²
= 18² - 12²
= 180
⇒ CD = \(6\sqrt{5}\) (cm)
Xét ∆ABC và ∆CDB có:
\(\dfrac{BC}{BD}=\dfrac{12}{18}=\dfrac{2}{3}\)
\(\dfrac{AB}{CD}=\dfrac{4\sqrt{5}}{6\sqrt{5}}=\dfrac{2}{3}\)
\(\dfrac{AC}{BC}=\dfrac{8}{12}=\dfrac{2}{3}\)
⇒ \(\dfrac{BC}{BD}=\dfrac{AB}{CD}=\dfrac{AC}{BC}=\dfrac{2}{3}\)
Vậy ∆ABC ∽ ∆CDB (c-c-c)
Cho Tam giác ABC vuông tại A có AB=9cm, AC=12cm , đường cao AH a) chứng minh: tam giác abh ~ tam giác cba b) tính BC;AH c) Tia phân giác góc B cắt AC tại D.Chứng minh: AD.AC=AH.DC
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
c: AD là phân giác
=>AD/DC=BA/BC=AH/AC
=>AD*AC=AH*DC
Cho tam giác ABC nhon (AB<AC) có dien tích 100, 2 đuong cao BE và CF. Tính dien tích tu giác BFECZ neu : góc A = 45°
ΔAEB vuông tại E có góc A=45 độ
nên ΔEAB vuông cân tại E
=>\(\dfrac{AE}{AB}=\dfrac{1}{\sqrt{2}}\)
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
=>\(\dfrac{S_{AFE}}{S_{ACB}}=\left(\dfrac{1}{\sqrt{2}}\right)^2=\dfrac{1}{2}\)
=>\(S_{AFE}=50\)
=>\(S_{BFEC}=50\)
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH (H ∈ BC).
a) Chứng minh : AABC dồng dạng với AHBA.
b) Lấy điểm M thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CM tại K. Chứng minh : CM.CK = CH.CB.
c) Tia BK cắt HA tại D. Chứng minh: BKH = BCD.
giúp mình câu c với ạ!
a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có
góc B chung
=>ΔABC đồng dạngvới ΔHBA
b: Xet ΔCHM vuông tại H và ΔCKB vuông tại K có
góc HCM chung
=>ΔCHM đồng dạngvới ΔCKB
=>CH/CK=CM/CB
=>CH*CB=CK*CM
c: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có
goc HBD chung
=>ΔBHD đồng dạng với ΔBKC
=>BH/BK=BD/BC
=>BH/BD=BK/BC
=>ΔBHK đồng dạng vơi ΔBDC
=>góc BKH=góc BCD
Cho tam giác ABC có AB = 5cm, AC = 6cm, góc A = 90°+(góc B/2). Tính BC
xét ΔABC vuông tại A, áp dụng tính chất pytago ta có
\(BC^2=AC^2+AB^2\)
\(=6^2+5^2\)
\(=25+36\)
\(=56\)
=>\(BC=\sqrt{61}\approx7,8\left(cm\right)\)
Cho tam giác ABC, các đường phân giác AD, BE, CF. Gọi M là giao của BE và DF, N là giao của DE và CF a) Kẻ MI và NK sống song với AD ( I thuộc AB, K thuộc AC) Cm tam giác AIM đồng dạng với tam giác AKN b) Cm góc FAM = góc EAN
Cho tam giác ABC vuông tại A , đg cao AH a) cm tam giác AHB đồng dạng với tam giác CAB . Và AH.CB=AB.AC b) Gọi D, E lần lượt là hình chiếu của H trên Ab , AC .Tứ giác DEHA là hình gì?Vì sao??? c) Cho AB=9cm , AC=12cm . tính DE d) cm : AH^2 = DA.DB+EA.EC
a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
c:
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
\(AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)
=>DE=7,2cm