Tìm a>1 để bất phương trình \(log_a\left(1-6a^{-x}\right)+2x-2\ge0\) nghiệm đúng với mọi x>2
Tìm a>1 để bất phương trình \(log_a\left(1-6a^{-x}\right)+2x-2\ge0\) nghiệm đúng với mọi x>2
Giải bất phương trình : \(3log_3\left(1+\sqrt{a}+\sqrt[3]{a}\right)>2log_2\sqrt{a}\)
Cho 3 số a,b,c > 0 thỏa mãn a + b + c = 3
Chứng minh : \(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+a^2}\ge1\)
Lời giải:
Ta có:
\(\text{VT}=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}\)
\(=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)
\(=(a+b+c)-2\left(\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\right)\)
Áp dụng BĐT Cauchy cho các số dương:
\(\text{VT}\geq (a+b+c)-2\left(\frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\right)\)
\(\Leftrightarrow \text{VT}\geq (a+b+c)-\frac{2}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)
Áp dụng BĐT Cauchy tiếp:
\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}\)
\(=\frac{2(ab+bc+ac)+3}{3}\leq \frac{2.\frac{(a+b+c)^2}{3}+3}{3}\)
Do đó: \(\text{VT}\geq (a+b+c)-\frac{2}{3}.\frac{2.\frac{(a+b+c)^2}{3}+3}{3}=1\) do $a+b+c=3$
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
cho khối tứ diện ABCD có AB=a ,CD=b và tất cả các cạnh còn lại đều bằng 1 khối tứ diện có thể tích lón nhất là:
A.\(\dfrac{\sqrt{2}}{12}\)
B.\(\dfrac{2\sqrt{3}}{27}\)
C.\(\dfrac{4\sqrt{3}}{27}\)
D.\(\dfrac{2\sqrt{3}}{9}\)
giải bất phương trình sau:
6x+1≤8x-27x-1
Lời giải:
Đặt \(\left\{\begin{matrix}
2^x=a\\
3^{x-1}=b\end{matrix}\right.\)
\(\text{BPT}\Leftrightarrow 3ab+1\leq a^3-b^3\)
\(\Leftrightarrow a^3-b^3-1-3ab\geq 0\)
\(\Leftrightarrow (a-b-1)(a^2+b^2+1+ab+a-b)\geq 0\) (*)
(sd hằng đẳng thức phân tích bậc 3 dạng \(x^3+y^3+z^3-3xyz\) )
Vì \(a^2+b^2+1+ab+a-b=\frac{(a+b)^2+(a+1)^2+(b-1)^2}{2}\geq 0\) nên từ (*) suy ra \(a-b-1\geq 0\)
\(\Leftrightarrow 2^x-3^{x-1}-1\geq 0\Leftrightarrow 3.2^x-3^x-3\geq 0\)
Xét \(f(x)=3.2^x-3^x-3\Rightarrow f'(x)=\ln 8.2^x-\ln 3.3^x\)
\(f'(x)=0\Leftrightarrow x=\log_{\frac{2}{3}}\frac{\ln 3}{\ln 8}\)
Lập bảng biến thiên ta thấy đồ thị hàm số f(x) cắt y=0 tại 2 điểm \(x=1; x=2\); và đoạn đồ thị có giá trị không âm đi từ x=1 đến x=2
Do đó \(f(x)\geq 0\Leftrightarrow 1\leq x\leq 2\)
help me
x^2 - 5x+6 < ( 2-x) log\(^x_2\)
ta có : \(\left(2-x\right)\log_2x>x^2-5x+6\) \(\left(đk:x>0\right)\)
\(\Leftrightarrow\left(2-x\right)\log_2x>\left(2-x\right)\left(3-x\right)\) (1)
th1) \(x< 2\) \(\left(1\right)\Leftrightarrow\log_2x>3-x\Leftrightarrow x>2^{3-x}>2^{3+2}\Leftrightarrow x>32\left(loại\right)\)
th2) \(x>2\) \(\left(1\right)\Leftrightarrow\log_2x< 3-x\Leftrightarrow x< 2^{3-x}< 2^{3+2}\Leftrightarrow x< 32\)
kết hợp điều kiện ta có \(2< x< 32\)
vậy \(2< x< 32\) .
help me
1, tìm m đẻ bpt sau t/m x thuộc ( 2;3)
log\(^{x^2+4x+m}_5\) - log\(^{x^2+1}_5\)\(\le1\)
-2. giải bpt
log \(^{\left(x-\dfrac{1}{4}\right)}_x\ge2\)
bài 1 mk o bt lm ; nên mk lm câu 2 thôi nha .
bài 2) ta có : \(\log_x\left(x-\dfrac{1}{4}\right)\ge2\Leftrightarrow x-\dfrac{1}{4}\ge x^2\Leftrightarrow x^2-x+\dfrac{1}{4}\le0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\le0\)
mà ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow0\le\left(x-\dfrac{1}{2}\right)^2\le0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)
vậy \(x=\dfrac{1}{2}\)
help me
log \(^{x+4}_2\)+ 2log\(^{x+2}_4\)= 2log\(^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
Lời giải:
Ta có:
\(\log_2(x+4)+2\log_4(x+2)=2\log_{\frac{1}{2}}\frac{1}{8}=6\)
\(\Leftrightarrow 2\log_4(x+4)+2\log_4(x+2)=6\)
\(\Leftrightarrow \log_4(x+4)+\log_4(x+2)=3\)
\(\Leftrightarrow \log_4[(x+2)(x+4)]=3\)
\(\Leftrightarrow (x+2)(x+4)=4^3=64\)
\(\Leftrightarrow x^2+6x-56=0\)
\(\Leftrightarrow x=-3\pm \sqrt{65}\)
Kết hợp với ĐKXĐ ta suy ra \(x=-3+\sqrt{65}\) là nghiệm của pt
help me
\(log_2\sqrt{2x^2-2x-3}+log^{x-1}_{\dfrac{1}{2}}=0\)
\(log^{x+4}_2+2log^{x+2}_4=2log^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
\(log^{4^x+1}_2=log^{2^{2x+3}-6}_2+x\)
giải pt
\(2^{2x}-\sqrt{2^x+6}=6\) , \(8^x+1=2\sqrt[3]{2^{x+1}-1}\)