\(\Leftrightarrow x^3-3x^2+m>0\) ; \(\forall x\in\left(1;3\right)\)
\(\Leftrightarrow x^3-3x^2>-m\) ; \(\forall x\in\left(1;3\right)\)
Xét hàm \(f\left(x\right)=x^3-3x^2\) trên \(\left(1;3\right)\)
\(f'\left(x\right)=3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\Rightarrow\min\limits_{\left(1;3\right)}f\left(x\right)=f\left(2\right)=-4\)
\(\Rightarrow m< -4\)