xác định m để hàm số:
a. y=x3-3(2m+1)x2+(12m+5)x+2 đồng biến trên tập xác định
b. y=mx3-(2m-1)x2+(m-2)x-2 đồng biến trên tập xác định
c. y=\(\dfrac{-1}{3}mx^3+mx^2-x+3\) nghịch biến trên tập xác định
d. y=\(\dfrac{x^2+mx-5}{3-x}\) nghịch biến trên từng khoảng xác định
1/3x3+mx2+(3m-2)x+1 đồng biến trên (1;2)
Định m để hàm số:
a. y=x3 -3(2m+1)x2 +(12m+5)x+2 đồng biến trên tập xác định
b. y=mx3 -(2m-1)x2 +(m-2)x-2 đồng biến trên tập xác định
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=log3(x3 - mx + 1) xác định trên khoảng (1;+∞)
A. 2
B.1
C.3
D. Vô số
Với giá trị nào của m thì đồ thị hàm số y=2x³+3( m-1 )x²+6(m-2)x-1 có cực đại , cực tiểu thoả mãn |Xcđ+Xct|=2
Có bao nhiêu giá trị nguyên của tham số m để phương trình 4x -m.2x+1 + (2m2 + 5) = 0 có 2 nghiệm nguyên phân biệt?
A. 1 B. 5 C.2 D.4
cho các số thực dương a, b, x, y thỏa mãn a>1, b>1 và \(a^{x^2}=b^{y^2}=\left(ab\right)^2\). Giá trị nhỏ nhất của biểu thức P=8x+y là \(m+n\sqrt{p},m,n,p\in N,p\le15\), giá trị của m+n+p thuộc khoảng:
A. (7;9) B. [10;13) C. [18;21) D. [14;16)
chứng minh hàm số y=\(\dfrac{1}{3}x^3-mx^2-\left(2m+3\right)x+9\) luôn có cực trị với mọi giá trị của hàm số m
tìm giá trị m để pt 2^x=mx+1 có 2 nghiệm phân biệt