mn giúp tui câu 4,5,6,8,10,11,12,13 😢
mn giúp tui câu 4,5,6,8,10,11,12,13 😢
4C (đây là lý thuyết cơ bản trong SGK, câu này sai do dấu tương đương, nếu là đấu suy ra thì đúng)
5C (cũng là nghiệm cơ bản trong SGK)
6D (cũng SGK)
8.
\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=sin\left(\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k2\pi\\x=\dfrac{5\pi}{12}+k2\pi\end{matrix}\right.\) (\(k\in Z\))
10.
\(sin\left(\dfrac{2x}{3}+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow\dfrac{2x}{3}+\dfrac{\pi}{3}=k\pi\)
\(\Leftrightarrow\dfrac{2x}{3}=-\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=-\dfrac{\pi}{2}+\dfrac{k3\pi}{2}\) (\(k\in Z\))
(Lưu ý rằng \(-k\) và \(k\) là như nhau do k là số nguyên bất kì nên bất kể trước \(...k\pi\) là đấu gì thì người ta thường chuyển hết về dấu dương)
11.
\(cosx=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow cosx=cos\left(\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{4}+k2\pi\) (\(k\in Z\))
12.
\(cosx=0\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) (\(k\in Z\))
13.
\(sin\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\)
\(\Leftrightarrow x=-\dfrac{\pi}{3}+k\pi\) (\(k\in Z\))
Giải phương trình
18.
\(1-sin^22x+2\left(sinx+cosx\right)^3-3sin2x-3=0\)
\(\Leftrightarrow2\left(sinx+cosx\right)^3-\left(sin^22x+3sin2x+2\right)=0\)
\(\Leftrightarrow2\left(sinx+cosx\right)^3-\left(sin2x+1\right)\left(sin2x+2\right)=0\)
\(\Leftrightarrow2\left(sinx+cosx\right)^3+2\left(sinx+cosx\right)^2\left(sinx.cosx+1\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)^2\left(sinx+cosx+sinx.cosx+1\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)^2\left(sinx+1\right)\left(cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-cosx\\sinx=-1\\cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\sinx=-1\\cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
19.
\(\left(cosx-sinx\right)\left(cos^2x+sin^2x+sinx.cosx\right)=1\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(1+sinx.cosx\right)=1\)
Đặt \(cosx-sinx=t\in\left[-\sqrt{2};\sqrt{2}\right]\)
\(\Rightarrow t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\dfrac{1-t^2}{2}\)
Pt trở thành:
\(t\left(1+\dfrac{1-t^2}{2}\right)=1\)
\(\Leftrightarrow t^3-3t+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow cosx-sinx=1\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
20.
\(sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x+1=2cos^2\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)\)
\(\Leftrightarrow sin\dfrac{x}{2}.sinx-cos\dfrac{x}{2}.sin^2x-\left[2cos^2\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)-1\right]=0\)
\(\Leftrightarrow sin\dfrac{x}{2}.sinx-cos\dfrac{x}{2}.sin^2x-cos\left(\dfrac{\pi}{2}-x\right)=0\)
\(\Leftrightarrow sin\dfrac{x}{2}sinx-cos\dfrac{x}{2}sin^2x-sinx=0\)
\(\Leftrightarrow sinx\left(sin\dfrac{x}{2}-cos\dfrac{x}{2}.sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sin\dfrac{x}{2}-cos\dfrac{x}{2}sinx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}cos^2\dfrac{x}{2}-1=0\)
\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\left(1-sin^2\dfrac{x}{2}\right)-1=0\)
\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)
\(\Leftrightarrow sin\dfrac{x}{2}=1\)
\(\Leftrightarrow...\)
Giải phương trình
ĐKXĐ: \(sinx\ne0\)
Chia 2 vế cho \(sin^2x\) ta được:
\(\dfrac{3}{sin^2x}-4=4cotx.\left(\dfrac{cosx}{sinx}\right)^2-\dfrac{3cotx}{sin^2x}\)
\(\Leftrightarrow3\left(1+cot^2x\right)-4=4cotx.cot^2x-3cotx\left(1+cot^2x\right)\)
\(\Leftrightarrow3cot^2x-1=4cot^3x-3cotx-3cot^3x\)
\(\Leftrightarrow cot^3x-3cot^2x-3cotx+1=0\)
\(\Leftrightarrow\left(cotx+1\right)\left(cot^2x-4cotx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=2-\sqrt{3}\\cotx=2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{5\pi}{12}+k\pi\\x=\dfrac{\pi}{12}+k\pi\end{matrix}\right.\)
Bài 1. Giải các phương trình sau:
a/ \(sin\left(2x-\dfrac{\pi}{5}\right)=1\)
b/ \(sin2x=\dfrac{5}{4}\)
c/ \(sin\left(5x-\dfrac{\pi}{3}\right)+sin2x=0\)
d/ \(sin\left(7x-\dfrac{5\pi}{6}\right)+cos\left(3x+\dfrac{\pi}{3}\right)=0\)
a.
\(sin\left(2x-\dfrac{\pi}{5}\right)=1\)
\(\Leftrightarrow2x-\dfrac{\pi}{5}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{7\pi}{20}+k\pi\)
b.
\(sin2x=\dfrac{5}{4}>1\)
\(\Rightarrow\)Phương trình đã cho vô nghiệm
c.
\(sin\left(5x-\dfrac{\pi}{3}\right)+sin2x=0\)
\(\Leftrightarrow sin\left(5x-\dfrac{\pi}{3}\right)=-sin2x\)
\(\Leftrightarrow sin\left(5x-\dfrac{\pi}{3}\right)=sin\left(-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{\pi}{3}=-2x+k2\pi\\5x-\dfrac{\pi}{3}=\pi+2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{21}+\dfrac{k2\pi}{7}\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
d.
\(sin\left(7x-\dfrac{5\pi}{6}\right)=-cos\left(3x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow sin\left(7x-\dfrac{5\pi}{6}\right)=sin\left(3x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-\dfrac{5\pi}{6}=3x-\dfrac{\pi}{6}+k2\pi\\7x-\dfrac{5\pi}{6}=\dfrac{7\pi}{6}-3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{5}+\dfrac{k\pi}{5}\end{matrix}\right.\)
Bài 6: Giải các phương trình sau:
a/ \(2sinx+\sqrt{2}=0\)
b/ \(sin\left(x-2\right)=\dfrac{2}{3}\)
c/ \(sin\left(2x-\dfrac{\pi}{5}\right)=sin\left(\dfrac{\pi}{5}+x\right)\)
Tất cả k dưới đây là \(k\in Z\)
a.
\(2sinx=-\sqrt{2}\)
\(\Leftrightarrow sinx=-\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k2\pi\\x=\dfrac{5\pi}{4}+k2\pi\end{matrix}\right.\)
b.
\(sin\left(x-2\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=arcsin\left(\dfrac{2}{3}\right)+k2\pi\\x-2=\pi-arcsin\left(\dfrac{2}{3}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+arcsin\left(\dfrac{2}{3}\right)+k2\pi\\x=2+\pi-arcsin\left(\dfrac{2}{3}\right)+k2\pi\end{matrix}\right.\)
c.
\(sin\left(2x-\dfrac{\pi}{5}\right)=sin\left(\dfrac{\pi}{5}+x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{5}=\dfrac{\pi}{5}+x+k2\pi\\2x-\dfrac{\pi}{5}=\dfrac{4\pi}{5}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\pi}{5}+k2\pi\\x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
Lời giải:
$y=2\sin ^2x+\cos x-3$
$=2(1-\cos ^2x)+\cos x-3$
$=-2\cos ^2x+\cos x-1$
Đặt $\cos x=a$ với $a\in [-1;1]$ thì cần tìm min, max của:
$y=-2a^2+a-1$
Ta thấy:
$y=\frac{-7}{8}-2(a-\frac{1}{4})^2\leq \frac{-7}{8}$ với mọi $a\in [-1;1]$ nên $y_{\max}=\frac{-7}{8}$
$y=(3-2a)(a+1)-4\geq -4$ với mọi $-1\leq a\leq 1$
Do đó $y_{\min}=-4$
\(y=\sqrt{5}\left(\dfrac{1}{\sqrt{5}}cosx-\dfrac{2}{\sqrt{5}}sinx\right)+3\)
Đặt \(\dfrac{1}{\sqrt{5}}=cos\alpha\Rightarrow\dfrac{2}{\sqrt{5}}=sin\alpha\)
\(\Rightarrow y=\sqrt{5}\left(cosx.cos\alpha-sinx.sin\alpha\right)+3=\sqrt{5}cos\left(x+\alpha\right)+3\)
Do \(-1\le cos\left(x+\alpha\right)\le1\)
\(\Rightarrow3-\sqrt{5}\le y\le3+\sqrt{5}\)
dùng công thức hạ bậc giải pt sau \(tan^2x\left(2x-\dfrac{\pi}{3}\right)=2\)
=>\(\left\{{}\begin{matrix}tan\left(2x-\dfrac{pi}{3}\right)=\sqrt{2}\\tan\left(2x-\dfrac{pi}{3}\right)=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-\dfrac{pi}{3}=arctan\left(\sqrt{2}\right)+kpi\\2x-\dfrac{pi}{3}=arctan\left(-\sqrt{2}\right)+kpi\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(\dfrac{pi}{3}+arctan\left(\sqrt{2}\right)+kpi\right)\\x=\dfrac{1}{2}\left(\dfrac{pi}{3}+arctan\left(-\sqrt{2}\right)+kpi\right)\end{matrix}\right.\)
dùng công thức hạ bậc để giải pt sau
\(2cosx+1=0\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
`2cos x+1=0`
`<=>cos x=-1/2`
`<=>x=[+-2\pi]/3+k2\pi` `(k in ZZ)`
\(2\cos x+1=0\)
\(\Leftrightarrow2\cos x=-1\)
\(\Leftrightarrow\cos x=-\dfrac{1}{2}\)
\(\Leftrightarrow\cos x=\cos\left(\dfrac{2\pi}{3}\right)\)
\(\Leftrightarrow x=\pm\dfrac{2\pi}{3}+k2\pi\) \((k\in \mathbb Z)\)
Dùng công thức hạ bấc để giải các pt sau
a) sin(1 - x) = \(\dfrac{\sqrt{3}}{2}\)
b) tan2 (2x – \(\dfrac{\pi}{3}\) ) = 2
c) cos2 (x – \(\dfrac{\pi}{5}\)) = sin2(2x + \(\dfrac{4\pi}{5}\) )
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
`a)sin(1-x)=\sqrt{3}/2`
`<=>[(1-x=\pi/3+k2\pi),(1-x=[2\pi]/3+k2\pi):}`
`<=>[(x=1-\pi/3-k2\pi),(x=1-[2\pi]/3-k2\pi):}` `(k in ZZ)`
__________________________
`b->` Bạn vt lại đề nhé