Bài 5: Lũy thừa của một số hữu tỉ

H24

(x-11+y)^2+(x-4-y)^2=0

DH
2 tháng 9 2017 lúc 20:56

Với mọi giá trị của x;y ta có:

\(\left(x-11+y\right)^2+\left(x-4-y\right)^2\ge0\)

Để \(\left(x-11+y\right)^2+\left(x-4-y\right)^2=0\) thì:

\(\left\{{}\begin{matrix}\left(x-11+y\right)^2=0\\\left(x-4-y\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y=11\\x-y=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+x-y=11+4\\y=x-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=15\\y=x-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{15}{2}\\y=\dfrac{15}{2}-4=\dfrac{7}{2}\end{matrix}\right.\)

Chúc bạn học tốt!!!

Bình luận (8)
NN
2 tháng 9 2017 lúc 21:16

\(\left(x-11+y\right)^2+\left(x-4-y\right)^2=0\)

\(x^2+y^2+121+2xy-22y-22x+x^2+16+y^2-8x-8y+2xy=0\)

\(2x^2+2y^2+4xy-30x-30y+137=0\)

\(2\left(x+y\right)^2-30\left(x+y\right)+56,35+80,65=0\)

\(2\left(x+y+7,5\right)^2+80,65=0\)

Với mọi giá trị của x;y thì \(2\left(x+y+7,5\right)^2+80,65>0\)

Do đó x;y thuộc rỗng

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
MA
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
KH
Xem chi tiết
BM
Xem chi tiết
BM
Xem chi tiết
TV
Xem chi tiết