Ta có : IM=\(\sqrt{97}\)
=> ptr dg tròn : (x+2)2 + (y-3)2=97
IM=\(\sqrt{\left(2+2\right)^2+\left(-3-3\right)^2}=2\sqrt{13}\)
Phương trình (C) là:
(x+2)^2+(y-3)^2=52
Ta có : IM=\(\sqrt{97}\)
=> ptr dg tròn : (x+2)2 + (y-3)2=97
IM=\(\sqrt{\left(2+2\right)^2+\left(-3-3\right)^2}=2\sqrt{13}\)
Phương trình (C) là:
(x+2)^2+(y-3)^2=52
trong Oxy cho 2 điểm A(-1;2), B(-2;3) và 2 đường thẳng có phương trình d1\(\left\{{}\begin{matrix}x=-1+2t\\y=-2+t\end{matrix}\right.\)và (d2)x-3y-9=0
a)viết phương trình đường tròn (C1)có tâm B và tiếp xúc với d1
Bài 1. Viết phương trình đường tròn đi qua 2 điểm A(2;3), B(-1;1) và có tâm I nằm trên đường thẳng ∆: x-3y-11=0
Bài 2. Viết phương trình đường tròn đi qua 2 điểm A (1;2), B(3;4) và tiếp xúc với đường thẳng ∆: 3x + y - 3 = 0
Cho đường tròn (C): x2+y2=4, viết các phương trình tiếp tuyến của đường tròn đi qua điểm A(2;3)
phương trình tiếp tuyến của đường tròn (C) có phương trình : \(x^2+y^2-4x-8y-5\) =0 đi qua điểm A(-1;0)
a3x-4y+3=0
b3x+4y+3=0
c-3x+4y+3=0
d3x+4y-3=0
Cho tam giác ABC biết điểm \(H\left(3;2\right),G\left(\dfrac{5}{3};\dfrac{8}{3}\right)\) lần lượt là trực tâm, trọng tâm của tam giác, đường thẳng BC có phương trình x+2y-2=0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC
CHỦ ĐỀ PHƯƠNG TRÌNH ĐƯỜNG THẲNG
Bài 1) Viết PTTQ của đường thẳng d
a) Qua M(-1;-4) và song song với đường thẳng 3x+5y-2=0
b) Qua N(1;1) và vuông góc với đường thẳng 2x+3y+7=0
Bài 2) Viết PT đường thẳng đi qua M(2;5) và cách đều hai điểm P(-1;2),Q(5;4)
Bài 3) Cho đường thằng d1: 2x-y-2=0 ; d2: x+y+3=0 và điểm M(3;0). Viết phương trình đường thẳng D đi qua M, cắt d1 và d2 lần lượt tại điểm A và B sao cho M là trung điểm của đoạn thẳng AB.
Bài 4) Cho tam giác ABC biết A(2;1) B(-1;0) C(0;3)
a) Viết PTTQ của đường cao AH
b)Viết PTTQ của đường trung trực của đoạn thẳng AB
c) Viết PTTQ của đường thẳng BC
d) Viết PTTQ của đường thẳng qua A và song song với đường thẳng BC
Bài 5) Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình đường thẳng \(\Delta\) song song với đường thẳng d: 3x-4y+1=0 và cách d một khoảng bằng 1
Bài 6) Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC biết phương trình cạnh BC: x-2y+5=0, phương trình đường trung tuyến BB': y-2=0 và phương trình đường trung tuyến CC': 2x-y-2=0. Tìm tọa độ các đỉnh của tam giác.
Bài 7) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thằng d1: x-y-4=0 , d2: 2x=y-2=0 và 2 điểm A(7;5) B(2;3). Tìm điểm C trên đường thẳng d1 và điểm D trên đường thằng d2 sao cho tứ giác ABCD là hình bình hành.
Bài 8) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm I(6;2) là giao điểm của hai đường chéo AC và BD. Điểm M(1;5) thuộc đường thẳng AB và trung điểm A của cạnh CD thuộc đường thằng d: x+y-5=0. Viết phương trình đường thẳng AB.
CHỦ ĐỀ ĐƯỜNG TRÒN:
Bài 9) Trong mặt phẳng với hệ tọa độ Oxy, cho đường thằng d: 2x-y-5=0 và hai điểm A(1;2) B(4;1). Viết phương trình đường tròn (C) có tâm thuộc d và đi qua hai điểm A,B
Bài 10) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d1: x+3y+8=0, d2: 3x-y+10=0 và điểm A(-2;1). Viết phương trình đường tròn (C) có tâm thuộc d1 đi qua điểm A và tiếp xúc với d2
Bài 11) Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(-1;1) B(3;3) và đường thẳng d: 3x-y+8=0. Viết phương trình đường tròn (C) đi qua hai điểm A,B và tiếp xúc với d
Bài 12) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d: x+2y-3=0 và \(\Delta\): x+3y-5=0. Viết phương trình đường tròn (C) có bán kính bằng \(\frac{2\sqrt{10}}{5}\), có tâm thuộc d và tiếp xúc với \(\Delta\)
Bài 13) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): \(\left(x-1\right)^2+\left(y-2\right)^2=8\)
a) Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A(3;-4)
b) Viết phương trình tiếp tuyến của đường tròn (C) đi qua điểm B(5;-2)
c) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến vuông góc với đường thẳng d: x+y+2014=0
d) Viết phương trình tiếp tuyến của đường tròn (C), biết tiếp tuyến tạo với trục tung một góc 45 độ
CHỦ ĐỀ ELIP
Bài 14) Xác định các đỉnh, độ dài các trục, tiêu cự, tiêu điểm, tâm sai của elip có phương trình sau:
a) \(\frac{x^2}{2}+\frac{y^2}{2}=1\)
b) \(4x^2+25y^2=100\)
Bài 15) Lập phương trình chính tắc của Elip, biết
a) Elip đi qua điểm M\(\left(2;\frac{5}{3}\right)\) và có một tiêu điểm F1(-2;0)
b) Elip nhận F2(5;0) là một tiêu điểm và có độ dài trục nhỏ bằng \(4\sqrt{6}\)
c) Elip có độ dài trục lớn bằng \(2\sqrt{5}\) và tiêu cự bằng 2.
d) Elip đi qua hai điểm M(2;\(-\sqrt{2}\)) và N\(\left(-\sqrt{6};1\right)\)
Bài 16) Lập phương trình chính tắc của Elip, biết:
a) Elip có tổng độ dài hai trục bằng 8 và tâm sai \(e=\frac{1}{\sqrt{2}}\)
b) Elip có tâm sai \(e=\frac{\sqrt{5}}{3}\) và hình chữ nhật cơ sở có chu vi bằng 20.
c) Elip có tiêu điểm F1(-2;0) và hình chữ nhật cơ sở có diện tích bằng \(12\sqrt{5}\)
Bài 1: Cho đường tròn (C) có phương trình: x2 + y2 + 4x - 8y - 5 = 0
a, Tìm tọa độ tâm và bán kính của đường tròn.
b, Viết phương trình tiếp tuyến của đường tròn tại điểm A(1;0).
c, Viết phương trình tiếp tuyến của đường tròn đi qua điểm B(-3;11).
d, Viết phương trình tiếp tuyến của đường tròn vuông góc với đường thẳng: x + 2y = 0.
Bài 2: Viết phương trình tiếp tuyến (d) của (C) : x2 + y2 - 4x - 2y = 0 biết (d) đi qua điểm A(3;-2).
Bài 3: Viết phương trình tiếp tuyến với (C) : x2 + y2 - 4x + 2y = 0 tại giao điểm của (C) và đường thẳng d : x + y = 0.
Bài 4: Xét vị trí tương đối của hai đường tròn và viết phương trình tiếp tuyến chung của chúng:
(C1) : x2 + y2 - 2x - 3 = 0 (C2) : x2 + y2 - 8x - 8y + 28 = 0
\(A(1;-2),B(3;4),C(-1;0)\)
a) Viết pt đường tròn đi qua A,B và có R=5
b) Viết pt đường tròn đi qua A,B và tiếp xúc với đường thẳng AC
Cho hai điểm I(0;5) và M(3;1)
1 Viết phương trình đường tròn (C) có tâm I và đi qua M
2 Tìm phương trình tiếp tuyến với (C) kẻ từ A(5;-2)
3 Định M để đường thẳng d : y= x + m và đường tròn (C) có giao điểm
4 Chứng minh rằng N(5;5) Thuộc đường tròn . Tìm điểm P trên (C) sao cho tam giác MNP vuông tại M