Bài 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN

H24

Cho tam giác ABC biết điểm \(H\left(3;2\right),G\left(\dfrac{5}{3};\dfrac{8}{3}\right)\) lần lượt là trực tâm, trọng tâm của tam giác, đường thẳng BC có phương trình x+2y-2=0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC

HP
28 tháng 3 2021 lúc 22:43

Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.

Ta có cái này: \(\vec{HG}=\dfrac{2}{3}\vec{HO}\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{3}-3=\dfrac{2}{3}\left(x_O-3\right)\\\dfrac{8}{3}-2=\dfrac{2}{3}\left(y_O-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_O=1\\y_O=3\end{matrix}\right.\Rightarrow O=\left(1;3\right)\)

\(d\left(O;BC\right)=\dfrac{\left|1+2.3-2\right|}{\sqrt{5}}=\sqrt{5}\)

Phương trình trung trực BC: \(2x-y+1=0\)

\(\Rightarrow\) Trung điểm M của BC có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}2x-y+1=0\\x+2y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\Rightarrow M=\left(0;1\right)\)

Lại có \(\vec{AG}=\dfrac{2}{3}\vec{AM}\Rightarrow A=\left(5;6\right)\)

\(\Rightarrow R=OA=5\)

Phương trình đường tròn ngoại tiếp:

\(\left(x-1\right)^2+\left(y-3\right)^2=25\)

Bình luận (1)

Các câu hỏi tương tự
TV
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
KR
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
NQ
Xem chi tiết
TV
Xem chi tiết