Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD
Cho (O ;R). Từ một điểm A bên ngoài đường tròn kẻ hai tiếp tuyến AB, AC (B, C là tiếp điểm). I là một điểm thuộc đoạn BC ( IB < IC ). Qua I kẻ đường thẳng d vuông góc với OI cắt AB và AC thứ tự tại E và F
1. Chứng minh các tứ giác OIBE và OIFC nội tiếp được
2. Chứng minh I là trung điểm của EF
3. Gọi K là điểm thuộc cung nhỏ BC. Tiếp tuyến tại K của (O) cắt AB và AC tại M và N, tính chu vi tam giác AMN theo R nếu OA = 2R
4. Qua O kẻ đường thẳng vuông góc với AO cắt AB, AC thứ tự tại P và Q. Tìm vị trí của A để diện tích tam giác APQ nhỏ nhất
Đường tròn tâm (O) bán kính AB. Trên đường thẳng AB lấy điểm C sao cho B nằm giữa A,C. Kẻ tiếp tuyến CK với đường tròn (O) (K là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CK tại H. Gọi I là giao điểm OH và AK, J là giao điểm của BH với đường tròn (O) (J không trùng với B) a) Chứng minh AJ.HB = AH.AB b) Chứng minh 4 điểm B, O, I, J cùng nằm trên một đường tròn.
cho tam giác ABC có ba góc nhọn (AB∠AC) nội tiếp đường tròn (o) vẽ tiếp tuyến tại A của đường tròn(o) cắt đường thẳng BC tại S tia phân giác của góc BAC cắt BC tại K và cắt đường tròn (o) tại E ,OE cắt dây BC tại I a/ chứng minh:SA2 =SB*SC b/chứng minh:OE⊥BC tại I d/vẽ tiếp tuyến SD của đường tròn (o) D là tiếp điểm D khác A . chứng minh:tứ giác SAOD nội tiếp được đường tròn và I
Từ một điểm A ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm). trên tia đối của tia BC, lấy điểm D. Gọi E là giao điểm của DO vá AC . Qua E , vẽ tiếp tuyến thứ hai với đường tròn (O), có tiếp điểm là M ; tiếp tuyến này cắt đường thẳng AB ở K.
a. Chứng minh bốn điểm D ,B, ,O, M cùng thuộc một đường tròn.
b. Chứng minh D ,B, O, M ,K cùng thuộc một đường tròn.
Cho đường tròn (O) đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
a) Chứng minh BHFE là tứ giác nội tiếp
b) Chứng minh BI.BF=BC.BE
c) Tính diện tích tam giác FEC theo R khi H là trung điểm của OA
d) Cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua một điểm cố định
Cho nửa đường tròn tâm O đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Lấy điểm E là 1 điểm thuộc nửa đường tròn ( E khác với A và B). Tiếp tuyến của nửa đường tròn tại E cắt Ax và By lần lượt tại C và D.
Chứng minh : CD=AC+BD, góc COD=90 độ,AC.BD
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) (AB < AC). Đường cao BE kéo dài cắt đường tròn tại K. Kẻ KD vuông góc với BC tại D. Qua E kẻ đường thẳng vuông góc với OA cắt AB tại H. Tia DE cắt AB tại I.
a, Chứng minh tứ giác KEDC nội tiếp. Xác định tâm của đường tròn này.
b, Chứng minh KB là tia phân giác của góc AKD
c, Chứng minh tứ giác CKIH là hình thanh