Bài 12: Số thực

DS

Tìm x,y biết: \(\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)

AH
12 tháng 1 2020 lúc 17:47

Lời giải:

Ta thấy:

$(7x-5y)^{2018}\geq 0, \forall x,y$

$(3x-2z)^{2020}\geq 0, \forall x,z$

$(xy+yz+xz-4500)^{2022}\geq 0, \forall x,y,z$

Do đó để tổng $(7x-5y)^{2018}+(3x-2z)^{2020}+(xy+yz+xz-4500)^{2022}=0$ thì:

$(7x-5y)^{2018}=(3x-2z)^{2020}=(xy+yz+xz-4500)^{2022}=0$

$\Leftrightarrow$ \(\left\{\begin{matrix} 7x=5y(1)\\ 3x=2z(2)\\ xy+yz+xz=4500(3)\end{matrix}\right.\)

Từ $(1);(2)\Rightarrow y=\frac{7}{5}x; z=\frac{3}{2}x$

Thay vào $(3)$:

$x.\frac{7}{5}x+\frac{7}{5}x.\frac{3}{2}x+x.\frac{3}{2}x=4500$

$\Leftrightarrow x^2=900\Rightarrow x=\pm 30$

Nếu $x=30\Rightarrow y=42; z=45$

Nếu $x=-30\Rightarrow y=-42; z=-45$

Bình luận (0)
 Khách vãng lai đã xóa
VT
12 tháng 1 2020 lúc 18:43

!

Bình luận (0)
 Khách vãng lai đã xóa
VT
12 tháng 1 2020 lúc 18:48

Cách khác:

\(\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)

Ta có:

\(\left\{{}\begin{matrix}\left(7x-5y\right)^{2018}\ge0\\\left(3x-2z\right)^{2020}\ge0\\\left(xy+yz+zx-4500\right)^{2022}\ge0\end{matrix}\right.\forall x,y,z.\)

\(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}\ge0\) \(\forall x,y,z.\)

\(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(7x-5y\right)^{2018}=0\\\left(3x-2z\right)^{2020}=0\\\left(xy+yz+zx-4500\right)^{2022}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}7x-5y=0\\3x-2z=0\\xy+yz+zx-4500=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}7x=5y\\3x=2z\\xy+yz+zx=4500\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+zx=4500\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+zx=4500\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\xy+yz+zx=4500\end{matrix}\right.\)

Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=10k\\y=14k\\z=15k\end{matrix}\right.\)

Có: \(xy+yz+zx=4500\)

\(\Rightarrow10k.14k+14k.15k+15k.10k=4500\)

\(\Rightarrow140.k^2+210.k^2+150.k^2=4500\)

\(\Rightarrow k^2.\left(140+210+150\right)=4500\)

\(\Rightarrow k^2.500=4500\)

\(\Rightarrow k^2=4500:500\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3.\)

+ TH1: \(k=3.\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.3=30\\y=14.3=42\\z=15.3=45\end{matrix}\right.\)

+ TH2: \(k=-3.\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-3\right)=-30\\y=14.\left(-3\right)=-42\\z=15.\left(-3\right)=-45\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(30;42;45\right),\left(-30;-42;-45\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NV
Xem chi tiết
NV
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
BT
Xem chi tiết
CT
Xem chi tiết
DL
Xem chi tiết