Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

LT

Tìm x , biết

a) 3x(x-1)+x-1=0

b) (x-2)(x2 +2x +7) +2 (x2 -4)-5(x-2)=0

c) ( 2x-1)2 -25=0

d) x3 +27 +(x+3)(x-9)

*mình cần gấp

TH
13 tháng 10 2020 lúc 21:48

a, 3x(x - 1) + x - 1 = 0

\(\Leftrightarrow\) (x - 1)(3x + 1) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=1\\x=\frac{-1}{3}\end{matrix}\right.\)

Vậy S = {1; \(\frac{-1}{3}\)}

b, (x - 2)(x2 + 2x + 7) + 2(x2 - 4) - 5(x - 2) = 0

\(\Leftrightarrow\) (x - 2)(x2 + 2x + 7) + 2(x - 2)(x + 2) - 5(x - 2) = 0

\(\Leftrightarrow\) (x - 2)[(x2 + 2x + 7 + 2(x + 2) - 5] = 0

\(\Leftrightarrow\) (x - 2)(x2 + 2x + 7 + 2x + 4 - 5) = 0

\(\Leftrightarrow\) (x - 2)(x2 + 4x + 6) = 0

\(\Leftrightarrow\) (x - 2)[(x + 2)2 + 2] = 0

Vì [(x + 2)2 + 2] > 0 với mọi x nên

\(\Rightarrow\) x - 2 = 0

\(\Leftrightarrow\) x = 2

Vậy S = {2}

c, (2x - 1)2 - 25 = 0

\(\Leftrightarrow\) (2x - 1 - 5)(2x - 1 + 5) = 0

\(\Leftrightarrow\) (2x - 6)(2x + 4) = 0

\(\Leftrightarrow\) (x - 3)(x + 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy S = {3; -2}

d, x3 + 27 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x + 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x + 3)(x2 - 3x + 9 + x - 9) = 0

\(\Leftrightarrow\) (x + 3)(x2 - 2x) = 0

\(\Leftrightarrow\) x(x + 3)(x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x+3=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)

Vậy S = {0; -3; 2}

Chúc bn học tốt! (Dễ mà :v)

Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
SK
Xem chi tiết
MH
Xem chi tiết
TM
Xem chi tiết
NV
Xem chi tiết
TH
Xem chi tiết
NP
Xem chi tiết
HN
Xem chi tiết
KB
Xem chi tiết