Bài 4: Những hằng đẳng thức đáng nhớ (Tiếp)

TD

Tim Min

a ) 2x^2 - 4xy + 4y^2 - 6x

b) z^2 - 4z t + 5t ^2 - 2t + 13

c) 16x^2 - 8x+y^2 - 2y

DH
16 tháng 8 2017 lúc 11:03

a, \(2x^2-4xy+4y^2-6x\)

\(=x^2-2xy-2xy+4y^2+x^2-3x-3x+9-9\)

\(=\left(x-2y\right)^2+\left(x-3\right)^2-9\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-2y\right)^2+\left(x-3\right)^2-9\ge-9\)

Để \(\left(x-2y\right)^2+\left(x-3\right)^2-9=-9\) thì

\(\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3-2y=0\\x=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1,5\\x=3\end{matrix}\right.\)

Vậy..............

b, \(z^2-4zt+5t^2-2t+13\)

\(=z^2-2zt-2zt+4t^2+t^2-t-t+1+12\)

\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)

Với mọi giá trị của \(z;t\in R\) ta có:

\(\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)

Để \(\left(z-2t\right)^2+\left(t-1\right)^2+12=12\) thì

\(\left\{{}\begin{matrix}\left(z-2t\right)^2=0\\\left(t-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)

Vậy...............

Câu c tường tự !!!

Bình luận (0)
TN
16 tháng 8 2017 lúc 11:21

a,Đặt A= \(2x^2-4xy+4y^2-6x\)

\(=\left(2x^2-4xy-6x\right)+4y^2\)

\(=2\left(x^2-2xy-3x\right)+4y^2\)

\(=2\left[x^2-2x\left(y+\dfrac{3}{2}\right)+\left(y+\dfrac{3}{2}\right)^2\right]+4y^2-\left(y+\dfrac{3}{2}\right)^2\)

\(=2\left(x-y-\dfrac{3}{2}\right)^2+4y^2-y^2-3y-\dfrac{9}{4}\)

\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y^2-y+\dfrac{1}{4}\right)-3\)

\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y-\dfrac{1}{2}\right)^2-3\)

Với mọi giá trị của x;y ta có:

\(\left(x-y-\dfrac{3}{2}\right)^2\ge0;\left(y-\dfrac{1}{2}\right)^2\ge0\)

\(\Rightarrow2\left(x-y-\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2-3\ge-3\)

Vậy Min A = -3 khi \(\left\{{}\begin{matrix}x-y-\dfrac{3}{2}=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}-\dfrac{3}{2}=0\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

b, Đặt B = \(z^2-4zt+5t^2-2t+13\)

\(=\left(z^2-4zt+4t^2\right)+\left(t^2-2t+1\right)+12\)

\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)

Với mọi giá trị của z;t ta có:

\(\left(z-2t\right)^2\ge0;\left(t-1\right)^2\ge0\)

\(\Rightarrow\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)

Vậy Min B = 12 khi \(\left\{{}\begin{matrix}z-2t=0\\t-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)

c, Đặt C = \(16x^2-8x+y^2-2y\)

\(=\left(16x^2-8x+1\right)+\left(y^2-2y+1\right)-2\)

\(=\left(4x-1\right)^2+\left(y-1\right)^2-2\)

Với mọi giá trị x;y ta có:

\(\left(4x-1\right)^2\ge0;\left(y-1\right)^2\ge0\)

\(\Rightarrow\left(4x-1\right)^2+\left(y-1\right)^2-2\ge-2\)

Vậy Min C = -2 khi \(\left\{{}\begin{matrix}4x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=1\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NR
Xem chi tiết
DP
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
TM
Xem chi tiết
TF
Xem chi tiết
NM
Xem chi tiết