Ôn tập chương 1

KS

Tìm giá trị nhỏ nhất của các biểu thức sau

a) C= \(\left|\dfrac{1}{3}x+4\right|\) +\(1\dfrac{2}{3}\)

b)D= \(\left|x-6\right|\) +\(\left|x+\dfrac{5}{4}\right|\)

H24
9 tháng 11 2018 lúc 23:19

\(a,C=\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)

Ta có \(\left|\dfrac{1}{3}x+4\right|\ge0\)

\(\Rightarrow\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\ge1\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(\left|\dfrac{1}{3}x+4\right|=0\)

\(\Leftrightarrow\dfrac{1}{3}x+4=0\)

\(\Leftrightarrow\dfrac{1}{3}x=0-4=-4\)

\(\Leftrightarrow x=-4:\dfrac{1}{3}\)

\(\Leftrightarrow x=-12\)

Vậy \(\min\limits_C=1\dfrac{2}{3}\Leftrightarrow x=-12\)

\(b,D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)

Ta có : \(\left\{{}\begin{matrix}\left|x-6\right|\ge-x+6\\\left|x+\dfrac{5}{4}\right|\ge x+\dfrac{5}{4}\end{matrix}\right.\)

\(\Rightarrow\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\ge-x+6+x+\dfrac{5}{4}=\dfrac{29}{4}\)

Dấu "=" xảy ra khi

\(\left\{{}\begin{matrix}-x+6\ge0\\x+\dfrac{5}{4}\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le6\\x\ge-\dfrac{5}{4}\end{matrix}\right.\)

Vậy \(\min\limits_D=\dfrac{29}{4}\Leftrightarrow-\dfrac{5}{4}\le x\le6\)

Bình luận (0)
RT
9 tháng 11 2018 lúc 23:41

b) \(D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)

\(D=\left|6-x\right|+\left|x+\dfrac{5}{4}\right|\ge\left|6-x+x+\dfrac{5}{4}\right|=\dfrac{29}{4}\)

Dấu = xảy ra khi \(\left(6-x\right)\left(x+\dfrac{5}{4}\right)\ge0\Leftrightarrow-\dfrac{5}{4}\le x\le6\)

vậy \(D_{min}=\dfrac{29}{4}\) khi \(-\dfrac{5}{4}\le x\le6\)

Bình luận (1)

Các câu hỏi tương tự
SK
Xem chi tiết
KS
Xem chi tiết
ND
Xem chi tiết
LN
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
TP
Xem chi tiết
NT
Xem chi tiết
KB
Xem chi tiết