Bài 4: Giá trị tuyệt đối của một số hữu tỉ. Cộng, trừ, nhân, chia số thập phân

NH

tìm giá trị nhỏ nhất của biểu thức:

B=\(\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)

NH
23 tháng 12 2017 lúc 18:51

Với \(\forall x\) ta có :

\(B=\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)

\(\Leftrightarrow B=\left|x-2010\right|+\left|2011-x\right|+\left|x-2012\right|\)

\(\Leftrightarrow B\ge\left|x-2010\right|+\left|2011-x+x-2012\right|\)

\(\Leftrightarrow B\ge\left|x-2010\right|+1\)

Lại có : \(\left|x-2010\right|\ge0\)

\(\Leftrightarrow\left|x-2010\right|+1\ge1\)

Dấu "=" xảy ra khi \(\Leftrightarrow\left|x-2010\right|=0\)

\(\Leftrightarrow x=2010\)

Vậy \(A_{Min}=1\Leftrightarrow x=2010\)

Bình luận (3)
MS
13 tháng 3 2018 lúc 17:51

Oh!!!!!!!! T nhớ t nói làm lại bài này cho Hằng mak quên nè:v

Ngô Tấn Đạt Nguyễn Thanh Hằng

\(L=\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)

\(L=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)

\(L\ge\left|x-2010+2012-x\right|+\left|x-2011\right|\)

\(L\ge2+\left|x-2011\right|\ge2\)

Dấu "=" khi: \(\left\{{}\begin{matrix}2010\le x\le2012\\x=2011\end{matrix}\right.\Leftrightarrow x=2011\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
KM
Xem chi tiết
VT
Xem chi tiết
NG
Xem chi tiết
QT
Xem chi tiết
LP
Xem chi tiết
LN
Xem chi tiết
NH
Xem chi tiết
TM
Xem chi tiết