Ôn tập chương 1

SK

Tìm giá trị nhỏ nhất của biểu thức :

                 \(A=\left|x-2001\right|+\left|x-1\right|\)

HQ
10 tháng 5 2017 lúc 17:48

Giải:

Dễ thấy: \(\left|x-1\right|=\left|1-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2001\right|+\left|1-x\right|\) \(\ge\left|x-2001+1-x\right|=2000\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2001\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)

\(\Leftrightarrow1\le x\le2001\)

Vậy \(A_{min}=2000\Leftrightarrow1\le x\le2001\)

Bình luận (0)
NQ
13 tháng 7 2017 lúc 20:26

A =/x-2001/ + /x-1/
Với x<1 ta có A = 2001 - x +1 -x =2002-2x. Khi đó A>2002
Với 1<= x <= 2001 ta có A = 2001-x +x-1 = 2000
Với x>2001ta có A=x-2001+x -1 = 2x -2000. Khi đó A> 2.2001 - 2000 =2002.
Vậy minA = 2000 khi 1<= x <= 2001.

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
VL
Xem chi tiết
DD
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
KS
Xem chi tiết
KS
Xem chi tiết
DN
Xem chi tiết