Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

NA

Tim cac so nguyen x,y thoa man: x3+2x2+3x+2=y3

VT
25 tháng 2 2018 lúc 10:46

Xét \(2x^2+3x+2=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{7}{16}>0\forall x\in R\)

=> \(x^3< y^3\left(1\right)\) (1)

Giả sử : \(y^3< \left(x+2\right)^3\)

\(\Leftrightarrow x^3+2x^2+3x+2< x^3+6x^2+12x+8\)

\(\Leftrightarrow-4x^2-9x-6< 0\)

\(\Leftrightarrow4x^2+9x+6>0\)

\(\Leftrightarrow4\left(x+\dfrac{9}{8}\right)^2+\dfrac{15}{64}>0\)

=> Giả sử đúng .

=> \(y^3< \left(x+2\right)^3\left(2\right)\)

Từ (1)(2) => \(y^3=\left(x+1\right)^3\)

\(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^2+3x+1\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

.) Khi \(x=1\Rightarrow y=2\).

.) Khi \(x=-1\Rightarrow y=0\)

Vậy nghiệm của pt ( x;y ) = {( 1;2 ) ; ( -1;0 )}

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
GG
Xem chi tiết
KK
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
TY
Xem chi tiết