Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

TG

So sánh:

a)

\(\dfrac{x-y}{x+y} và \dfrac{x^2-y^2}{x^2+y^2}\) với x>y>0

​b) 216 và (2+1)(22+1)(2​4+1)(28​+1)

​ Giải chi tiết giúp mk vs!!!😃 Thanks nhìu ạ

NT
25 tháng 9 2017 lúc 12:19

b. Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)

\(\Rightarrow\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)< 2^{16}\)

Bình luận (0)
MK
25 tháng 9 2017 lúc 12:20

\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)

\(\dfrac{x^2-y^2}{x^2+y^2}=\dfrac{\left(x+y\right)\left(x^2-y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)

Như vậy cần so sánh:

\(\left(x-y\right)\left(x^2+y^2\right)\)\(\left(x+y\right)\left(x^2-y^2\right)\)

Cần so sánh:

\(x\left(x^2+y^2\right)-y\left(x^2+y^2\right)\)\(x\left(x^2-y^2\right)+y\left(x^2-y^2\right)\)

\(x^3+xy^2-yx^2-y^3\)\(x^3-xy^2+yx^2-y^3\)

\(\left(x^3-y^3\right)+xy^2-yx^2\)\(\left(x^3-y^3\right)-xy^2+yx^2\)

Cần so sánh:

\(xy^2-yx^2\)\(yx^2-xy^2\)

Cộng cả 2 vế với \(xy^2\)\(yx^2\)

Cần so sánh:

\(xy^2-yx^2+xy^2+yx^2\)\(yx^2-xy^2+xy^2+yx^2\)

Cần so sánh

\(2xy^2\)\(2yx^2\)

\(xy^2\)\(yx^2\)

Xét các trường hợp nhỏ hơn,lớn hơn,bằng

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
MH
Xem chi tiết
PA
Xem chi tiết
NA
Xem chi tiết
NL
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
YH
Xem chi tiết
SD
Xem chi tiết