Ta có:
\(\sqrt{25}+\sqrt{9}=5+3=8\)
\(\sqrt{25+9}=\sqrt{34}< \sqrt{64}=8\)
Vậy, \(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)
Ta có:
\(\sqrt{25}+\sqrt{9}=5+3=8\)
\(\sqrt{25+9}=\sqrt{34}< \sqrt{64}=8\)
Vậy, \(\sqrt{25}+\sqrt{9}>\sqrt{25+9}\)
so sánh
a/\(2^{300}\)và \(3^{200}\) b/ \(0,1^{10}\)và \(0,3^{20}\) c/\(\sqrt{0,04}+\sqrt{0,25}\)và \(5,4+7\sqrt{0,36}\) d/\(\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)
a,\(\left(\frac{2^2}{5}\right)\)+\(5\frac{1}{2}\).(4,5-2,5)+\(\frac{2^3}{-4}\)
b,\(\left(-2^3\right)\)+\(\frac{1}{2}\):\(\frac{1}{8}\)-\(\sqrt{25}\)+|-64|
c,\(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{91^2}-\sqrt{\left(-7^2\right)}}\)
d,\(\left(-2^2\right)+\sqrt{36}-\sqrt{9}+\sqrt{25}20.20\))
e,\(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
h,\(\left(-3^2\right)\).\(\frac{1}{3}\)-\(\sqrt{49}\)+\(\left(5^3\right)\):\(\sqrt{25}\)
Bai 1:Tinh: \(\sqrt{1}\) - \(\sqrt{4}\) + \(\sqrt{9}\) - \(\sqrt{16}\) + \(\sqrt{25}\)- \(\sqrt{36}\)+........- \(\sqrt{400}\)
Bai 2: Thuc hien phep tinh (bang cach hop li neu co the)
a, 15/34+7/21+19/24-1\(\dfrac{15}{17}\)+2/3 c, 1/2+3/2*5/6
b,\(\sqrt{25}\)+3^2-\(\sqrt{9}\)
Bai 3 : mot lop hoc co 35 hs sau khi khao sat so hs duoc xep thanh ba loai gioi,kha ,
trung binh.So hs gioi va kha ti le voi 2 va 3 ; so hs kha va trung binh la luot ti le voi 4 va 5 .Tinh
so hs moi loai?
Bai 4 : thuc hien phep tinh sau do lam tron den chu so thap hpan thu nhat
a, -5,18-0,479 c, ( | -2,45| + 3,1)*1/2 - 3/4
b, (3-1/2)^2 + (1-5/2)^2
So sánh
a) 3*\(\sqrt{2}\) và 7, (21)
b) \(\frac{1}{\sqrt{1}+\sqrt{2}}\) + \(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.....+\frac{1}{\sqrt{99}+\sqrt{100}}\) và 9
\(\dfrac{3}{5}+\dfrac{\left(-1\right)}{4},\dfrac{|-3|}{5}\cdot\dfrac{4}{9}+\dfrac{\left(-4\right)}{9},\sqrt{16}+\sqrt{25}\)
Tính:
\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
\(\dfrac{3}{8}.19\dfrac{1}{3}\dfrac{3}{8}.33\dfrac{1}{3}\)
\(15.\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0,45+\dfrac{3}{4}\right).\left(-1\dfrac{5}{9}\right)\)
\(\left(\dfrac{-1}{3}\right)-\left(\dfrac{-3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{4}\right)^{20}\)
\(\dfrac{5^4.20}{25^5.4^5}\)
thực hiện phép tính (tính hợp lí nếu có thể)
1) \(\left(-\dfrac{1}{2}\right)^2:\dfrac{1}{4}-2.\left(\dfrac{-1}{2}\right)^3+\sqrt{4}\)
2) \(3-\left(\dfrac{-6}{7}\right)^0+\sqrt{9}:2\)
3) \(\left(-2\right)^3+\dfrac{1}{2}:\dfrac{1}{8}-\sqrt{25}+\left|-64\right|\)
4) \(\left(-\dfrac{1}{2}\right)^4+\left|-\dfrac{2}{3}\right|-2007^0\)
5) \(\dfrac{\left(0,4-\dfrac{2}{9}+\dfrac{2}{11}\right)}{1,4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0,25+\dfrac{1}{5}}{1\dfrac{1}{6}-0,875+0,7}\)
6) \(\left[2^3.\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\right]+\left[\dfrac{25}{22}+\dfrac{6}{25}-\dfrac{3}{22}+\dfrac{19}{25}+\dfrac{1}{2}\right]\)
1, So sánh A và B, biết
a, A= \(\sqrt{20+1}\) + \(\sqrt{40+2}\) + \(\sqrt{60+3}\)
B= \(\sqrt{1}\) + \(\sqrt{2}\) + \(\sqrt{3}\) + \(\sqrt{20}\) + \(\sqrt{40}\) + \(\sqrt{60}\)
10.\(\sqrt{0,01}\).\(\sqrt{\dfrac{16}{9}}\)+ 3\(\sqrt{49}\)-\(\dfrac{1}{6}\)\(\sqrt{4}\)