Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

DL

phân tích đa thức thành nhân tử bằng phương pháp phối hợp nhiều phương pháp :

a^2-25-2ab+b^2

5x^2-6xy+y^2

2x^3-8x^2+8x

5x-5y-3x^2+6xy-3y^2

4x^4-9x^2

x^8+4

4x^2-y^2+4x+1

3x^2-7x+10

x^5+x+1

x^4+2019x^2+2018x+2019

giúp mik với

BK
25 tháng 8 2018 lúc 17:40

a^2-25-2ab+b^2

= (a^2 - 2ab + b^2 ) - 5^2

= (a -b)^2 - 5^2 = ( a - b - 5 ) ( a - b + 5 )

5x^2-6xy+y^2

= (3x)^2 - 2.3x.y + y^2 - (2x)^2

= (3x - y)^2 - (2x)^2

= ( 3x - y - 2x ) ( 3x - y + 2x ) = ( x - y) ( 5x - y )

2x^3-8x^2+8x

= 2x^3 - 4x^2 - 4x^2 + 8x

= 2x^2(x - 2) - 4x(x-2)

= (2x^2 - 4x)(x-2)

= 2x(x-2)(x-2) = 2x .(x-2)^2

5x-5y-3x^2+6xy-3y^2

=5(x - y) - 3(x^2 - 2xy + y^2 )

= 5(x-y) - 3(x-y)^2 = (x-y)[ 5 - 3(x-y) ]

4x^4-9x^2

= (2x^2)^2 - (3x)^2

= (2x^2 - 3x)(2x^2 + 3x)

= x(2x - 3)x(2x + 3 ) = x^2(2x - 3)(2x + 3 )

Bình luận (0)
H24
25 tháng 8 2018 lúc 19:52

a) \(a^2-25-2ab+b^2\)

\(=\left(a-b\right)^2-25\)

\(=\left(a-b-5\right)\left(a-b+5\right)\)

b) \(5x^2-6xy+y^2\)

\(=\left(3x\right)^2-2.3x.y+y^2-\left(2x\right)^2\)

\(=\left(3x-y\right)^2-\left(2x\right)^2\)

\(=\left(3x-y-2x\right)\left(3x-y+2x\right)\)

\(=\left(x-y\right)\left(5x-y\right)\)

c) \(2x^3-8x^2+8x\)

\(=2x^3-4x^2-4x^2+8x\)

\(=2x^2\left(x-2\right)-4x\left(x-2\right)\)

\(=2x\left(x-2\right)\left(x-2\right)\)

\(=2x\left(x-2\right)^2\)

d) \(5x-5y-3x^2+6xy-3y^2\)

\(=5\left(x-y\right)-3\left(x^2-2xy+y^2\right)\)

\(=5\left(x-y\right)-3\left(x-y\right)^2\)

\(=\left(x-y\right)\left[5-3\left(x-y\right)\right]\)

e) \(4x^4-9x^2\)

\(=\left(2x^2\right)^2-\left(3x\right)^2\)

\(=\left(2x^2-3x\right)\left(2x^2+3x\right)\)

\(=x\left(2x-3\right).x\left(2x+3\right)\)

\(=x^2\left(2x-3\right)\left(2x+3\right)\)

f) \(x^8+4\)

\(=\left(x^4\right)^2+2.x^4.2+2^2-2.x^4.2\)

\(=\left(x^4+2\right)^2-4x^4\)

\(=\left(x^4+2\right)^2-\left(2x^2\right)^2\)

\(=\left(x^4+2-2x^2\right)\left(x^4+2+2x^2\right)\)

i) \(4x^2-y^2+4x+1\)

\(=\left(2x\right)^2+2.2x+1-y^2\)

\(=\left(2x+1\right)^2-y^2\)

\(=\left(2x+1-y\right)\left(2x+1+y\right)\)

j) \(3x^2-7x+10\)

\(=3\left(x^2-\dfrac{7}{3}x+\dfrac{10}{3}\right)\)

\(=3\left(x^2-2.x.\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{49}{36}+\dfrac{10}{3}\right)\)

\(=3\left[\left(x-\dfrac{7}{6}\right)^2+\dfrac{71}{36}\right]\)

g) \(x^5+x+1\)

\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2-1\right)\)

h) \(x^4+2019x^2+2018x+2019\)

\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)

\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)

Bình luận (0)
LA
25 tháng 8 2018 lúc 16:28

\(a^2-25-2ab+b^2=\left(a^2-2ab+b^2\right)-25=\left(a-b\right)^2-25=\left(a-b-5\right)\left(a-b+5\right)\)

Bình luận (0)
LA
25 tháng 8 2018 lúc 16:31

\(5x^2-6xy+y^2=5x^2-5xy-xy+y^2=5x\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5x-y\right)\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TA
Xem chi tiết
PT
Xem chi tiết
TA
Xem chi tiết
BT
Xem chi tiết
TN
Xem chi tiết
LL
Xem chi tiết
DL
Xem chi tiết
KV
Xem chi tiết