a, A = (b - c)³ + (c - a)³ + (a - b)³
Áp dụng hằng đẳng thức : a³ + b³ = (a + b)³ - 3ab(a + b) :
A = [(b - c)³ + (c - a)³] + (a - b)³
= [(b - c) + (c - a)]³ - 3(b - c)(c - a)[(b - c) + (c - a)] + (a - b)³
= (b - a)³ - 3(b - c)(c - a)(b - a) + (a - b)³
= [- (a - b)³] - 3(b - c)(c - a)[- (a - b)] + (a - b)³
= - (a - b)³ + 3(a - b)(b - c)(c - a) + (a - b)³
= 3(a - b)(b - c)(c - a)
b, x3.(x2-7)2-36x
=x(x\(^6\)-14x\(^4\)+49x\(^2\)-36)
=x[x\(^4\)(x\(^2\)-1)-13x(x\(^2\)-1)+36(x\(^2\)-1)]
=x(x-1)(x+1)(x\(^4\)-13x\(^2\)+36)
=x(x-1)(x+1)[x\(^2\)(x\(^2\)-4)-9]
=x(x-1)(x+1)(x-2)(x+2)(x-3)(x+3)