Ôn tập chương 1

HT

P = \(1+\dfrac{1}{2}\cdot\left(1+2\right)+\dfrac{1}{3}\cdot\left(1+2+3\right)+\dfrac{1}{4}\cdot\left(1+2+3+4\right)+...+\dfrac{1}{16}\cdot\left(1+2+3+...+16\right)\)

Cho a + b + c = 2016 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}.\) Tính S = \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

Giải giúp mình nha.

MS
7 tháng 12 2017 lúc 18:30

Làm lại cho you đây -_- vừa nãy bấm mt nhầm,đời t nhọ vãi

1)\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+....+16\right)\)

\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\dfrac{1+2+3+4}{4}+...+\dfrac{1+2+3+...+16}{16}\)

Xét thừa số tổng quát: \(\dfrac{1+2+3+...+t}{t}=\dfrac{\left[\left(t-1\right):1+1\right]:2.\left(t+1\right)}{t}=\dfrac{\dfrac{t}{2}\left(t+1\right)}{t}=\dfrac{\dfrac{t^2}{2}+\dfrac{t}{2}}{t}=\dfrac{t\left(\dfrac{t}{2}+\dfrac{1}{2}\right)}{t}=\dfrac{t}{2}+\dfrac{1}{2}\)

Như vậy: \(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)

\(P=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+....+\dfrac{17}{2}\)

\(P=\dfrac{2+3+4+5+...+17}{2}\)

\(P=\dfrac{152}{2}=76\)

2) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)

\(\Rightarrow2016\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{2016}{a+b}+\dfrac{2016}{b+c}+\dfrac{2016}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{2016}{3}-1-1-1=\dfrac{2007}{3}\)

Bình luận (0)
MS
7 tháng 12 2017 lúc 18:00

\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\)

Xét thừa số tổng quát: \(\dfrac{1+2+3+..+n}{n}=\dfrac{\left[\left(n-1\right):1+1\right]:2.\left(n+1\right)}{n}=\dfrac{\dfrac{n}{2}\left(n+1\right)}{n}=\dfrac{\dfrac{n^2}{2}+\dfrac{n}{2}}{n}=\dfrac{n\left(\dfrac{n}{2}+\dfrac{1}{2}\right)}{n}=\dfrac{n}{2}+\dfrac{1}{2}\)

Như vậy:

\(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)

\(P=1+\dfrac{2}{2}+\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{1}{2}+\dfrac{4}{2}+\dfrac{1}{2}+...+\dfrac{16}{2}+\dfrac{1}{2}\)

\(P=1+\left(\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{16}{2}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+...+\dfrac{1}{2}\right)\)

\(P=1+\dfrac{2+3+4+...+16}{2}+\dfrac{15}{2}\)

\(P=1+\dfrac{\left[\left(16-2\right):1+1\right]:2.\left(16+2\right)}{2}+\dfrac{15}{2}\)

\(P=1+210+\dfrac{15}{2}=218,5\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NL
Xem chi tiết
AT
Xem chi tiết
YA
Xem chi tiết
NT
Xem chi tiết
CR
Xem chi tiết
WT
Xem chi tiết
NQ
Xem chi tiết
WT
Xem chi tiết