Ôn tập chương 1

NT

Cho a,b,c là 3 số thực, thỏa mãn điều kiện:

a)\(\dfrac{a+b-c}{3\cdot c}=\dfrac{b+c-a}{3\cdot a}=\dfrac{c+a-b}{3\cdot b}\)

b)Tính giá trị biểu thức

\(P=\left(1+\dfrac{b}{a}\right)\cdot\left(1+\dfrac{a}{c}\right)\cdot\left(1+\dfrac{c}{b}\right)\)

MS
21 tháng 10 2017 lúc 18:06

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{3c}=\dfrac{b+c-a}{3a}=\dfrac{c+a-b}{3b}=\dfrac{a+b-c+b+c-a+c+a-b}{3a+3b+3c}=\dfrac{a+b+c+\left(a-a\right)+\left(b-b\right)+\left(c-c\right)}{3a+3b+3c}=\dfrac{a+b+c}{3\left(a+b+c\right)}=\dfrac{1}{3}\)

Khi đó:

\(\left\{{}\begin{matrix}\dfrac{a+b-c}{3c}=\dfrac{1}{3}\\\dfrac{b+c-a}{3a}=\dfrac{1}{3}\\\dfrac{c+a-b}{3b}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b-3c=3c\\3b+3c-3a=3a\\3c+3a-3b=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6c\\3b+3c=6a\\3c+3a=6b\end{matrix}\right.\)Thay vào \(P\)

\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\left(\dfrac{a+b}{a}\right)\left(\dfrac{c+a}{c}\right)\left(\dfrac{b+c}{b}\right)\)

\(27P=3\left(\dfrac{a+b}{a}\right).3\left(\dfrac{c+a}{c}\right).3\left(\dfrac{b+c}{b}\right)\)

\(27P=\left(\dfrac{3a+3b}{a}\right)\left(\dfrac{3c+3a}{c}\right)\left(\dfrac{3b+3c}{b}\right)\)

\(27P=\)\(\dfrac{6c}{a}.\dfrac{6b}{c}.\dfrac{6a}{b}=\dfrac{216abc}{abc}=216\Leftrightarrow P=\dfrac{216}{27}=8\)

Bình luận (1)
DS
14 tháng 12 2017 lúc 21:20

Thanks bạn nhiều vui

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
NL
Xem chi tiết
YA
Xem chi tiết
AT
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
DS
Xem chi tiết
CR
Xem chi tiết