Bài 7: Tỉ lệ thức

DT

Cho abc \(\ne\)0 và \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)

Tính P = \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)

Nhanh Nhanh nhận like cho câu trả lời hay nhất các bạn ơi

MV
9 tháng 6 2017 lúc 14:28

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)\(\dfrac{a+b-c}{c}=1\Leftrightarrow\dfrac{a+b}{c}-\dfrac{c}{c}=1\Leftrightarrow\dfrac{a+b}{c}-1=1\Leftrightarrow\dfrac{a+b}{c}=2\)\(\dfrac{b+c-a}{a}=1\Leftrightarrow\dfrac{b+c}{a}-\dfrac{a}{a}=1\Leftrightarrow\dfrac{b+c}{a}-1=1\Leftrightarrow\dfrac{b+c}{a}=2\)\(\dfrac{c+a-b}{b}=1\Leftrightarrow\dfrac{c+a}{b}-\dfrac{b}{b}=1\Leftrightarrow\dfrac{c+a}{b}-1=1\Leftrightarrow\dfrac{c+a}{b}=2\)\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\\ =\dfrac{a+b}{a}\cdot\dfrac{b+c}{b}\cdot\dfrac{c+a}{c}\\ =\left(a+b\right)\cdot\dfrac{1}{a}\cdot\left(b+c\right)\cdot\dfrac{1}{b}\cdot\left(c+a\right)\cdot\dfrac{1}{c}\\ =\left(a+b\right)\cdot\dfrac{1}{c}\cdot\left(b+c\right)\cdot\dfrac{1}{a}\cdot\left(c+a\right)\cdot\dfrac{1}{b}\\ =\dfrac{a+b}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}\\ =2\cdot2\cdot2\\ =8\)

Vậy \(P=8\)

Bình luận (3)
TT
9 tháng 6 2017 lúc 14:34

Hỏi đáp Toán

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LC
Xem chi tiết
BN
Xem chi tiết
KK
Xem chi tiết
NT
Xem chi tiết
NX
Xem chi tiết
NA
Xem chi tiết
NS
Xem chi tiết
ND
Xem chi tiết