Bài 11: Số vô tỉ. Khái niệm về căn bậc hai

HD

giúp mình với

1, tính

a, \(7\times\sqrt{\dfrac{6^2}{7^2}}-\sqrt{25}+\sqrt{\dfrac{\left(-3\right)^2}{2}}\)

b, \(-\sqrt{\dfrac{64}{49}}-\dfrac{3}{5}\times\sqrt{\dfrac{25}{64}}+\sqrt{0,25}\)

c, \(\sqrt{\dfrac{10000}{5}}-\dfrac{1}{4}.\sqrt{\dfrac{16}{9}}+\sqrt{\dfrac{\left(-3\right)^2}{\left(4\right)}}\)

d, \(\left|\dfrac{1}{4}-\sqrt{0,0144}\right|-\dfrac{3}{2}+\sqrt{\dfrac{81}{169}}\)

NT
25 tháng 10 2022 lúc 14:41

a: \(=7\cdot\dfrac{6}{7}-5+\dfrac{3\sqrt{2}}{2}=1+\dfrac{3}{2}\sqrt{2}\)

b: \(=-\dfrac{8}{7}-\dfrac{3}{5}\cdot\dfrac{5}{8}+\dfrac{1}{2}=\dfrac{-16+7}{14}-\dfrac{3}{8}=\dfrac{-9}{14}-\dfrac{3}{8}\)

\(=\dfrac{-72-42}{112}=\dfrac{-114}{112}=-\dfrac{57}{56}\)

c: \(=20\sqrt{5}-\dfrac{1}{4}\cdot\dfrac{4}{3}+\dfrac{3}{2}=20\sqrt{5}+\dfrac{3}{2}-\dfrac{1}{3}=20\sqrt{5}+\dfrac{7}{6}\)

 

Bình luận (0)