Bài 8: Tính chất của dãy tỉ số bằng nhau

PL

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}vax^3-y^3=z^3\)

TH
28 tháng 8 2018 lúc 15:06

Ta có:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\)

\(\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}\)

\(=\dfrac{x^3-y^3-z^3}{125-64-8}\left(1\right)\) ( Áp dụng tính chất dãy tỉ số bằng nhau )

\(x^3-y^3=z^3\)

\(\Rightarrow x^3-y^3-z^3=0\left(2\right)\)

Thay (2) vào (1) ta được

\(\dfrac{x^3-y^3-z^3}{125-64-8}=\dfrac{0}{53}=0\)

Với \(\dfrac{x^3}{125}=0\)

\(\Rightarrow x^3=0\)

\(\Rightarrow x=0\)

Với \(\dfrac{y^3}{64}=0\)

\(\Rightarrow y^3=0\)

\(\Rightarrow y=0\)

Với \(\dfrac{z^3}{8}=0\)

\(\Rightarrow z^3=0\)

\(\Rightarrow z=0\)

Vậy x = y = z = 0

Bình luận (0)
H24
28 tháng 8 2018 lúc 19:37

Ta có: \(x^3-y^3=z^3\Rightarrow x^3-y^3-z^3=0\)

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{2}\Rightarrow\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}\)

Áp dụng t/c dãy TSBN ta được:

\(\dfrac{x^3}{125}=\dfrac{y^3}{64}=\dfrac{z^3}{8}=\dfrac{x^3-y^3-z^3}{125-64-8}=\dfrac{0}{125-64-8}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=0\\\dfrac{y}{4}=0\\\dfrac{z}{2}=0\end{matrix}\right.\Rightarrow x=y=z=0\)

Bình luận (2)

Các câu hỏi tương tự
QT
Xem chi tiết
HM
Xem chi tiết
VT
Xem chi tiết
TH
Xem chi tiết
DV
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
HD
Xem chi tiết