Bài 11: Chia đa thức cho đơn thức

TK

CMR: f(x) = ( x^2 - 3x + 1 )^31 - ( x^2 - 4x + 5 )^30 + 2 chia hết cho x - 2

HV
21 tháng 11 2017 lúc 19:45

Đặt A(x) = x-2 = 0

\(\Rightarrow x=2\)

\(\Rightarrow\) nghiệm của A(x) là 2

Thay x = 2 vào f(x) ta được

\(\Rightarrow f\left(2\right)=\left(4-6+1\right)^{31}-\left(4-8+5\right)^{30}+2\)

\(\Rightarrow f\left(2\right)=\left(-1\right)^{31}-1^{30}+2\)

\(\Rightarrow f\left(2\right)=-2+2\)

\(\Rightarrow f\left(2\right)=0\)

\(\Rightarrow2\) là nghiệm của \(f\left(x\right)\)

Mà theo định lí Bê - đu ta có :

Đa thức f(x) chia hết cho x - a khi và chỉ khi f(a) = 0 ( tức là khi và chỉ khi a là nghiệm của đa thức)

\(\Rightarrow f\left(x\right)=\left(x^2-3x+1\right)^{31}-\left(x^2-4x+5\right)^{30}+2⋮x-2\)

Bình luận (2)

Các câu hỏi tương tự
OS
Xem chi tiết
OS
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
NM
Xem chi tiết
LL
Xem chi tiết
TK
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết