Bài 5: Lũy thừa của một số hữu tỉ

VV

Chứng minh rằng:Nếu S=1/22-1/24+1/26-...1/24n-2-1/24n+...+1/22002-1/22004,thì S<0,2

LH
22 tháng 9 2018 lúc 21:20

Có S=\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)

=>\(\dfrac{1}{2^2}S=\dfrac{1}{2^2}\)\(\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)

=> \(\dfrac{1}{2^2}\)S= \(\dfrac{1}{2^4}-\dfrac{1}{2^6}+\dfrac{1}{2^8}-...+\dfrac{1}{2^{4n}}-\dfrac{1}{2^{4n+2}}+...+\dfrac{1}{2^{2004}}-\dfrac{1}{2^{2006}}\)

+S =\(\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)

=> \(\dfrac{5}{4}\)S= \(\dfrac{1}{2^2}\)-\(\dfrac{1}{2^{2006}}\)

=> S= \(\dfrac{\left(\dfrac{1}{2^2}-\dfrac{1}{2^{2006}}\right)}{\dfrac{5}{2^2}}=\dfrac{\dfrac{1}{2^2}}{\dfrac{5}{2^2}}-\dfrac{\dfrac{1}{2^{2006}}}{\dfrac{5}{2^2}}=\dfrac{1}{5}-\dfrac{1}{2^{2004}.5}=0.2-\dfrac{1}{2^{2004}.5}\)

=> S <0,2

Vậy S <0,2(đpc/m)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
VV
Xem chi tiết
LY
Xem chi tiết
LN
Xem chi tiết
NN
Xem chi tiết
LV
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết