Cho 3 số x y z thỏa mãn:
x2+2yy+1=y2+2z+1=z2+2x+1=0
Tính giá trị BT: P= x2017+y3+z19
CHo các số thực x,y,z thỏa mãn đồng thời các điều kiện
\(\left\{{}\begin{matrix}x+y+z=2\\x^2+y^2+z^2=18\\xyz=1\end{matrix}\right.\)
Tính S=\(\dfrac{1}{xy+z-1}+\dfrac{1}{yz+x-1}+\dfrac{1}{xz+y-1}\)
cmr:
1. a) 1/x+1/y>=1/x+y với x,y>0
b) 1/2-x+x2>0 với x thuộc R
c)tìm x,y thuộc Z+ để x^3+y^3=3xy-1
Tìm các số dương x,y,z thỏa mãn xyz = 1 và \(\dfrac{1}{X^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}=1\)
CMR : Nếu tổng các số x,y,z không âm thì: \(x^3+y^3+z^3\ge3xyz\)
CMR: \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2\) chia hết cho x-1
Chứng ming rằng nếu x\(\ne\)0, y\(\ne\)0, z\(\ne\)0 và \(x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}\)thì
hoặc x=y=z hoặc xyz= 1 hoặc xyz= -1
a/ Cho x, y, z thỏa mãn: x + y + z = 3. Tìm GTLN của B = xy + yz + xz
b/ Cho a, b, c có tổng = 1 (a, b, c > 0). CM: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9.\)
BT1
a ) Cho a > 2 và b>2 chứng minh ab>a+b
b) cho x>= 0, y >= 0, z>= 0 . Chứng minh ( x+y ) (y+z ) ( z+x )
c ) Cho a và là các số bất kì .Chứng tỏ a2+b2 chia 2 >= ab