Ôn tập chương 1

CM

Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng: \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)( 2 cách nha mn)

VT
28 tháng 10 2019 lúc 10:08

Cách 1:

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{c^2}{d^2}\) (1)

\(\frac{c}{d}=\frac{a}{b}.\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right).\)

Cách 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Có:

\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\) (1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (2)

Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
AH
Xem chi tiết
NA
Xem chi tiết
DX
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
NN
Xem chi tiết
HA
Xem chi tiết