Bài 4: Những hằng đẳng thức đáng nhớ (Tiếp)

PN

Cho tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) Chứng minh rằng:

\(\dfrac{2a+3b}{2a-3b}\)=\(\dfrac{2c+3d}{2c-3d}\)

HQ
10 tháng 7 2017 lúc 18:30

Giải:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases}a=bk\\c=dk\end{cases}\)

Thay vào vế trái ta có:

\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)

Thay vào vế phải ta có:

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)

\(\Rightarrow VP=VT=\dfrac{2k+3}{2k-3}\Rightarrow\) Đpcm


Bình luận (0)
TT
28 tháng 11 2018 lúc 20:34

Ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)

\(\Rightarrow\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\Rightarrow\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (ĐPCM)

Bình luận (0)

Các câu hỏi tương tự
DV
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết