Bài 4: Góc tạo bởi tiếp tuyến và dây cung

H24

Cho tam giác ABC nhọn đường tròn tâm o đường kính BC các cá cạnh AB AC theo thứ tự tại E và D, BD và CEcắt nhau tại H a) chứng minh AH vuông góc với BC b) chứng minh bốn điểm A,E,D,H cùng thuộc một đường tròn C) gọi I là tâm của đường tròn đi qua bốn điểm A,D,E,H. Chứng minh rằng ID vuông góc với OD

NT
28 tháng 11 2023 lúc 19:00

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó;ΔBEC vuông tại E

=>CE\(\perp\)BE tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó;ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét tứ giác AEHD có \(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp đường tròn đường kính AH

=>A,E,H,D cùng nằm trên đường tròn đường kính AH

c: I là tâm của đường tròn đi qua 4 điểm A,E,H,D

=>I là trung điểm của AH

Gọi giao điểm của AH với BC là M

AH\(\perp\)BC

nên AH\(\perp\)BC tại M

\(\widehat{BHM}=\widehat{IHD}\)

mà \(\widehat{IHD}=\widehat{IDH}\)(ID=IH)

nên \(\widehat{BHM}=\widehat{IDH}\)

mà \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{HBM}\right)\)

nên \(\widehat{IDH}=\widehat{BCD}\)

OB=OD

=>ΔODB cân tại O

=>\(\widehat{OBD}=\widehat{ODB}\)

=>\(\widehat{ODH}=\widehat{DBC}\)

\(\widehat{IDO}=\widehat{IDH}+\widehat{ODH}\)

\(=\widehat{DBC}+\widehat{DCB}\)

\(=90^0\)

=>ID\(\perp\)DO

Bình luận (0)

Các câu hỏi tương tự
2N
Xem chi tiết
SK
Xem chi tiết
KL
Xem chi tiết
PV
Xem chi tiết
NN
Xem chi tiết
PA
Xem chi tiết
PN
Xem chi tiết
LQ
Xem chi tiết
HN
Xem chi tiết