Bài 6: Tam giác cân

TN
Cho tam giác ABC cs AB= 6cn AC =8cm và BC = 10cm A.chứng tỏ tam giác abc vuông B. Kẻ phân giác BD và CE (D thuộc AC , E thuộc AB) BD và CE cắt nhau tại I. tính BIC
NT
9 tháng 2 2021 lúc 20:21

a) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b) Ta có: ΔABC vuông tại A(cmt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(Hai góc nhọn phụ nhau)

mà \(\widehat{ABC}=2\cdot\widehat{DBC}\)(BD là tia phân giác của \(\widehat{ABC}\))

và \(\widehat{ACB}=2\cdot\widehat{ECB}\)(CE là tia phân giác của \(\widehat{ACB}\))

nên \(2\cdot\widehat{DBC}+2\cdot\widehat{ECB}=90^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=90^0\)

hay \(\widehat{IBC}+\widehat{ICB}=45^0\)

Xét ΔIBC có 

\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)(Định lí tổng ba góc trong một tam giác)

\(\Leftrightarrow\widehat{BIC}+45^0=180^0\)

\(\Leftrightarrow\widehat{BIC}=180^0-45^0\)

hay \(\widehat{BIC}=135^0\)

Vậy: \(\widehat{BIC}=135^0\)

Bình luận (0)
IP
9 tháng 2 2021 lúc 19:46

\(Hình \) \(tự \) \(vẽ\)

a, Xét △\(ABC\) ta có :

 \(AB\)2 + \(AC\)2\(= \)62 + 82= 100 ( cm ) mà \(BC\)2=102 =100 ( cm )

➙ AB+ AC2 = BC2

➙ Tam giác ABC vuông

 

 

    

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
NB
Xem chi tiết
DN
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết
PN
Xem chi tiết
LN
Xem chi tiết
XL
Xem chi tiết
TN
Xem chi tiết