Bài 7: Định lí Pitago

ND

Cho tam giác ABC cân tai A, điểm H thuộc AC sao cho BH vuông góc với AC. Tính độ dài AH biết AB = 15cm, BC = 10cm.

 
NT
15 tháng 2 2021 lúc 22:10

Kẻ AK⊥BC tại K

Ta có: ΔABC cân tại A(gt)

mà AK là đường cao ứng với cạnh đáy BC(gt)

nên AK là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

⇔K là trung điểm của BC

\(BK=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABK vuông tại K, ta được:

\(AK^2+BK^2=AB^2\)

\(\Leftrightarrow AK^2=AB^2-BK^2=15^2-5^2=200\)

hay \(AK=10\sqrt{2}\left(cm\right)\)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(Hai cạnh bên)

mà AB=15cm(gt)

nên AC=15cm

Xét ΔABC có 

AK là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AK\cdot BC}{2}\)(1)

Xét ΔABC có 

BH là đường cao ứng với cạnh AC(gt)

nên \(S_{ABC}=\dfrac{BH\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AK\cdot BC=BH\cdot AC\)

\(\Leftrightarrow BH\cdot15=10\sqrt{2}\cdot10\)

\(\Leftrightarrow BH\cdot15=100\sqrt{2}\)

\(\Leftrightarrow BH=\dfrac{100\sqrt{2}}{15}=\dfrac{20\sqrt{2}}{3}\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=15^2-\left(\dfrac{20\sqrt{2}}{3}\right)^2\)

\(\Leftrightarrow AH^2=225-\dfrac{800}{9}=\dfrac{1225}{9}\)

hay \(AH=\dfrac{35}{3}cm\)

Vậy: \(AH=\dfrac{35}{3}cm\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
TV
Xem chi tiết
TV
Xem chi tiết
B7
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
HN
Xem chi tiết
LD
Xem chi tiết
CP
Xem chi tiết