a: góc DMC+góc AMC=180 độ
góc ABC+góc AMC=180 độ
=>góc DMC=góc ABC
b: AC=BC
mà góc NAC=góc NBC và NC chung
nên ΔAMC=ΔBNC
=>MC=NC
a: góc DMC+góc AMC=180 độ
góc ABC+góc AMC=180 độ
=>góc DMC=góc ABC
b: AC=BC
mà góc NAC=góc NBC và NC chung
nên ΔAMC=ΔBNC
=>MC=NC
Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Cứu với các tiền bối ơi!!!!!!!
Cho nửa đường tròn (O) đường kính AB. Trên OA lấy I, qua I vẽ đường thẳng (d) vuông góc với OA cắt nửa đường tròn tại C. Trên cung BC lấy M, tia AM cắt CI tại K . Tia BM cắt đường thẳng (d) tại D. AD cắt nửa đường tròn tại M. Chứng minh: K là tâm đường tròn nội tiếp ∆MNI.
Cho đường tròn tâm O , đường kính AB . Trên đường tròn lấy điểm C , từ C lấy tiếp tuyến d . Đường thẳng vuông góc vs AB tại M . Đường thẳng vuông góc vs AB tại N.
a, Chứng minh rằng : MA=MC
b, Chứng minh rằng : MO là phân giác
c, MN = AM+ BN
GIÚP MIK VS
Cho đoạn thẳng AB và điểm C thuộc đường thẳng đó( C khác A,B), Về 1 nửa mặt phẳng bờ AB , vẽ các tia Ax,By vuông góc với AB . Trên Ax lấy M cố định . Kẻ tia Cz vuông góc với CM, Cz cắt By tại K. Vẽ đường tròn tâm O đường kính MC cắt MK tại E. CHỨNG MINH:
1. Tam giác AEB vuông
2.Cho A,B,M cố định. Tìm vị trí của C để tứ giác ABKM lớn nhất
Trên ( O;R), vẽ đường kính AB. lấy C thuộc (O) sao cho AC=R và lấy điểm D bất kì trên cung nhỏ BC (D ko trùng với B,C ). Gọi E là giao điểm của AD và BC. Đường thẳng đi qua E vuông góc với đưởng thẳng AB tại H. C/m tứ giác AHEC là tứ giác nội tiếp
Cho nửa đường tròn tâm O đường kính AB trên OA lấy điểm I . Qua I vẽ đường thẳng d vuông góc với OA cắt nửa đường tròn tại C . Trên cũng BC lấy điểm M tia AM cắt CI tại K .
a, chứng minh tứ giác BMKI nội tiếp
b, tia BM cắt đường thẳng d tại D. AD cắt đường tròn tại N . Chứng minh AI.BD=ID.AK
c, chứng minh K là tâm đường tròn nội tiếp tam giác MNI
: Cho đường tròn (O) bán kính R và một dây BC cố định. Gọi A là điểm chính giữa của cung nhỏ BC. Lấy điểm M trên cung nhỏ AC, kẻ tia Bx vuông góc với tia MA ở I và cắt tia CM tại D.
1) Chứng minh AMD=ABC và MA là tia phân giác của góc BMD.
2) Chứng minh A là tâm đường tròn ngoại tiếp tam giác BCD và góc BDC có độ lớn không phụ thuộc vào vị trí điểm M.
Cho ΔABC vuông ở A. Trên AC lấy điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:
a. Tứ giác ABCD nội tiếp
b. \(\widehat{ABD}\) = \(\widehat{ACD}\)
c. CA là phân giác của góc \(\widehat{SCB}\)