Có ai biết lời giải của bài này ko ạ, mình cũng đang cần hỏi
Có ai biết lời giải của bài này ko ạ, mình cũng đang cần hỏi
Giải giúp mình với.Cho nửa đường tròn đường kính AB cố định và tiếp tuyến Ax tại A với đường tròn. Một điểm M di động trên nửa đường tròn cùng bên với tiếp tuyến Ax, tia BM gặp tia phân giác của góc Ax tại I. Tìm tập hợp điểm I khi M di động trên nửa đường tròn.
Bài 4: Cho nửa đường tròn (O; R) đường kính AB, kẻ hai tiếp tuyến Ax, By. Từ M thuộc nửa đường tròn kẻ tiếp tuyển thứ ba cắt Ax, By lần lượt tại C và D. a/ Tính số đo góc COD b/C/m: AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn. c/Gọi N là giao điểm của BC và AD. C/m: MN // AC.
Cho nửa đường tròn tâm O đường kính AB. Điểm C chuyển động trên nửa đường tròn. Kẻ tia tiếp tuyến Ax với nửa đường tròn. Đường phân giác của góc xAC cắt nửa đường tròn tại D. Nối AC cắt BD tại K, tia AD cắt BC tại E
a) CM:tg EDKC nt và tam giác BAE cân tại B
b) Giả sử sinBAC=1/2.cm:AK=2KC
c) Cho AB=10cm, góc XAC=60. TÍnh diện tích tam giác EDC
d) Tìm vị trí điểm C để diện tích EAB lớn nhất
Cho tam giác ABC vuông tại A. Nửa đường tròn đường kính AB cắt cạnh BC tại điểm D (khác B). Lấy điểm E bất kì trên cung nhỏ AD (E không trùng với A và D). BE cắt cạnh AC tại điểm F. Chứng minh rằng CDEF là tứ giác nội tiếp.
Cho hình thang ABCD (đáy nhỏ BC, đáy lớn AD), nội tiếp đường tròn (O). Các tiếp tuyến của (O) tại B và D cắt nhau ở K. Đường thẳng AB và CD cắt nhau tại I, BK và ID cắt nhau tại E
a) Chứng minh BIKD là tứ giác nọi tiếp
b) Chứng minh IK//BC
Cho tam giác ABC vuông tại A ( có AB <AC ), đường cao AH . Trên tia AC lấy điểm D sao cho AD =AB . Trên tia HC lấy điểm E sao cho HE =AH a. Chứng minh: Bốn điểm A D E B thuộc cùng một đường tròn
Bài 1: Cho nửa đường tròn tâm o đường kính AB. M,N di động trên nửa đường tròn sao cho M nằm trên cung AN và MN=R . Gọi I là giai điểm của AM và BN, K là giao điểm của AN và BM. Chứng minh
a) Điểm I thuộc 1 đường cố định
b) Điểm K thuộc 1 đường cố định
Bài 2:Cho tam giác ABC nội tiếp đường tròn tâm o. Tiếp tuyến của đường tròn ở B và C cắt nhau ở D. Qua D kẻ một cát tuyến cắt đường tròn ở E và F, cắt cạnh AC ở I. Cho biết EF // AB, chứng minh 4 điểm O,I,C,D cùng thuộc 1 đường tròn
1. Cho tam giác ABC, đường thẳng d cắt hai cạnh AB, AC và trung tuyến AM theo thứ tự tại E, F và N
a. CMR: \(\frac{AB}{AE}+\frac{AC}{AF}=\frac{2AM}{AN}\)
b. Giả sử đường thẳng d song song với BC, trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh PQ // BC
2. Cho hình thoi ABCD có \(\widehat{BAD}=40^o\), O là giao điểm của hai đường chéo. Gọi H là hình chiếu vuông góc của O trên cạnh AB. Trên tia đối của tia BC, tia đối của tia DC lần lượt lấy các điểm M, N sao cho HM // AN. Tính số đo góc MON
Cho nửa đường tròn đường kính AB cố định. C là một điểm trên nửa đường tròn, trên dây AC kéo dài lấy điểm D sao cho CD = CB
a) Tìm quỹ tích các điểm D khi C chạy trên nửa đường tròn đã cho
b) Trên tia CA lấy điểm E sao cho CE = CB. Tìm quỹ tích các điểm E khi C chạy trên nửa đường tròn đã cho