Ôn tập chương 1

DH

 Cho n số x1, x2, ..., xn ,mỗi số nhận giá trị 1 hoặc -1.

Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

AH
22 tháng 11 2021 lúc 18:01

Lời giải:
Vì $x_1,x_2,...,x_n$ nhận giá trị $1$ hoặc $-1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ nhận giá trị $1$ hoặc $-1$

Để tổng $x_1x_2+...+x_nx_1=0$ thì số số hạng nhận giá trị $1$ bằng số số hạng nhận giá trị $-1$

Gọi số số hạng nhận giá trị $1$ và số số hạng nhận giá trị $-1$ là $k$

Tổng số số hạng: $n=k+k=2k$ 

Lại có:

$(-1)^k1^k=x_1x_2.x_2x_3...x_nx_1=(x_1x_2...x_n)^2=1$

$\Rightarrow k$ chẵn 

$\Rightarrow n=2k\vdots 4$

Bình luận (1)

Các câu hỏi tương tự
BD
Xem chi tiết
VL
Xem chi tiết
LQ
Xem chi tiết
TF
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
LQ
Xem chi tiết
HD
Xem chi tiết