Xét ΔMTQ và ΔMPN có
MT/MP=MQ/MN
góc TMQ=góc PMN
Do đó: ΔMTQ=ΔMPN
Suy ra: góc MTQ=góc MPN
=>QT//PN
=>NTQP là hình thang
mà NQ=PT
nên NTQP là hình thang cân
Xét ΔMTQ và ΔMPN có
MT/MP=MQ/MN
góc TMQ=góc PMN
Do đó: ΔMTQ=ΔMPN
Suy ra: góc MTQ=góc MPN
=>QT//PN
=>NTQP là hình thang
mà NQ=PT
nên NTQP là hình thang cân
Cho tam giác ABC cân tại A. Trên tia đối của AC lấy điểm D, trên tia đối đó của AB lấy điểm E sao cho AD = AE, chứng minh tứ giác BDEC là hình thang cân
Cho tam giác ABC cân tại A. Trên tia đối của AB lấy D, trên tia đối của AC lấy E sao cho AD = AE. a) Chứng minh AD̂E = ÂBC. b) Chứng minh BCDE là hình thang cân
Cho hình thang cân ABCD ( AB // CD và AB < CD ). AC cắt BD tại O. Trên tia đối của tia DC lấy điểm E sao cho ED = AB. Gọi M, N thứ tự là trung điểm của AB và CD.
a/ Chứng minh ∆AEC cân.
b/ Chứng minh M, O, N thẳng hàng.
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,AB
a) Chứng minh rằng tứ giác BCDE là hình thang cân
b) Chứng minh rằng tứ giác CNEQ là hình thang
c) Trên tia đối của tia MN lấy N' sao cho N'M = MN. Chứng minh rằng BN' vuông góc với BD ; EB = 2MN
d) Tam giác MNP là tam giác đều
Bài 2: Cho tam giác ABC cân tại A, M là điểm bấy kì nằm giữa hai điểm A và B. Trên tia đối của tia CA lấy N sao cho CN=BM. Vẽ ME và NF lần lượt vuông góc với đường thẳng BC. Gọi I là giao điểm của MN và BC.
a) Chứng minh rằng: IE =IF
b) Trên cạnh AC lấy D sao cho CD =CN. Chứng minh rằng BMDC là hình thang cân.
Cho tam giác OBD cân tại O, trên tia đối của OD lấy A,trên tia đối của OB lấy C sao cho OC=OA chứng minh Góc ACB= góc CBD. Từ đó suy ra ABCD là hình thang
Cho tam giác ABC cân tại A, M là điểm bất kì nằm giữa hai điểm A và B. Trên tia đối của tia CA lấy điểm N sao cho CN = BM. Vẽ ME và NF lần lượt vuông góc với đường thẳng BC. Gọi I là giao điểm của MN và BC.
a) Chứng minh: ΔMBE=ΔNCF
b) Chứng minh: ΔMIE=ΔNIF
c) Trên cạnh AC lấy điểm D sao cho CD=CN. Chứng minh tứ giác BMDC là hình thang cân.
Cho tam giacsOCD, trên tia đối của OC lấy A sao cho OA=OC, trên tia đối của OD lấy B
a) Tam giác OAB= tam giác OCD
b) chứng minh ABCD là hình thang
cho tam giác abc cân tại A,lấy điểm D bất kỳ trên AB, lấy điểm E trên tia đối của tia CA sao cho CE=BD. từ D kẻ đường thẳng song song với AC cắt BC tại F
1.tam giác DBF là tam giác j?
2.c/m DCEF là hình bình hành?
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,AB
a) Chứng minh rằng tứ giác BCDE là hình thang cân
b) Chứng minh rằng tứ giác CNEQ là hình thang
c) Tam giác MNP là tam giác đều