Bài 3: Hình thang cân

SK
Hướng dẫn giải Thảo luận (1)

Bài giải:

Có thể tìm được hai điểm M là giao điểm của các dòng kẻ sao cho nó cùng với ba điểm đã cho A, D, K là bốn đỉnh của một hình thang cân. Đó là hình thang AKDM1 (với AK là đáy) và hình thang ADKM2 (với DK là đáy).

Trả lời bởi Hiiiii~
SK
Hướng dẫn giải Thảo luận (2)
SK
Hướng dẫn giải Thảo luận (3)

Hình vẽ:

Hỏi đáp Toán

a)Xét \(\Delta ADE\) có:AD=AE(gt)

\(\Rightarrow\Delta ADE\) cân tại A

\(\Rightarrow\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\) (1)

Ta lại có:\(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{ACB}\)

\(\Rightarrow\) DE song song với BC

Xét tứ giác DEBC có:

DE song song với BC

\(\widehat{ABC}=\widehat{ACB}\) ( 2 góc đáy của tam giác ABC cân tại A)

\(\Rightarrow\) BDEC là hình thang cân

\(\Rightarrow\widehat{BDE}=\widehat{CED}\)

b) Theo câu a có:\(\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}=\dfrac{180^o-50^o}{2}=60^0\)

\(\widehat{ABC}=\widehat{ACB}\) ( câu a) nên \(\widehat{ABC}=60^o\)

Vì DE song song với BC\(\Rightarrow\) góc DEC+ góc BCE=180o

=>góc DEC+60o =180o

=>góc DEC=120o\(\widehat{BDE}=\widehat{CED}\)

=>BDE=120o

Trả lời bởi Đạt Trần
SK
Hướng dẫn giải Thảo luận (3)

a) Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau:

AC = BE (1)

Theo giả thiết AC = BD (2)

Từ (1) và (2) suy ra BE = BD do đó tam giác BDE cân.

b) Ta có AC // BE suy ra = (3)

∆BDE cân tại B (câu a) nên = (4)

Từ (3) và (4) suy ra =

Xét ∆ACD và ∆BCD có AC = BD (gt)

= (cmt)

CD cạnh chung

Nên ∆ACD = ∆BDC (c.g.c)

c) ∆ACD = ∆BDC (câu b)

Suy ra

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Trả lời bởi Tuyen Cao
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (3)

Bài giải:

Để xét xem tứ giác nào là hình thang cân ta dùng tính chất

"Trong hình thang cân hai cạnh bên bằng nhau"

Tứ giác ABCD là hình thang cân vì có AD = BC.

Tứ giác EFGH không là hình thang cân vì EF > GH.

Trả lời bởi Tuyết Nhi Melody
SK
Hướng dẫn giải Thảo luận (1)

Bài giải:

Xét hai tam giác vuông AED và BFC

Ta có: AD = BC (gt)

(gt)

Nên ∆AED = ∆BFC (cạnh huyền - góc nhọn)

Suy ra: DE = CF

Trả lời bởi Tuyết Nhi Melody
SK
Hướng dẫn giải Thảo luận (2)

Bài giải:

Theo hình vẽ, ta có: AB = 2cm, CD = 4cm

Trong tam giác vuông AED, áp dụng định lý Pitago ta được:

AD2 = AE2 + ED2

= 32 + 12 =10

Suy ra AD = 10cm

Vậy AB = 2cm, CD = 4cm, AD = BC = 10cm

Trả lời bởi Tuyết Nhi Melody
SK
Hướng dẫn giải Thảo luận (1)

Bài giải:

Do ABCD là hình thang cân nên AD = BC, AC = BC, D^=C^

Xét hai tam giác ADC và BCD, ta có:

AD = BC (gt)

AC = BD (gt)

DC chung

Nên ∆ADC = ∆BCD (c.c.c)

Suy ra C1^=D1^

Do đó tam giác ECD cân tại E, nên EC = ED

Ta lại có: AC = BD suy ra EA = EB

Chú ý: Ngoài cách chứng minh ∆ADC = ∆BCD (c.c.c) ta còn có thể chứng minh ∆ADC = ∆BCD (c.g.c) như sau:

AD = BC, D^=C^ , DC là cạnh chung.

Trả lời bởi Tuyết Nhi Melody
SK
Hướng dẫn giải Thảo luận (3)

Bài giải:

Gọi E là giao điểm của AC và BD.

∆ECD có \(\widehat{C_1}=\widehat{D}\) (do \(\widehat{ACD}=\widehat{BDC}\)) nên là tam giác cân.

Suy ra EC = ED (1)

Tương tự EA = EB (2)

Từ (1) và (2) suy ra AC = BD

Hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.


Trả lời bởi Hiiiii~