Bạn up lại hình vẽ đi bạn
Bạn up lại hình vẽ đi bạn
Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm, BD là tia phân giác của góc B ( D thuộc AC ). Đường thẳng kẻ từ D vuông góc với BC tại E
a) Tính AC
b) Chứng minh: Tam giác ABE cân
c) Trên tia BA lấy điểm F sao cho BF = BC. Chứng minh 3 điểm E, D, F thẳng hàng
Bài1:Cho ΔMNP vuông tại N. Tính độ dài MN biết MP=√30cm,NP=√14 cm
Bài2:Cho ΔABC cân tại A. Biết AB=2cm. Tính BC
Bài3:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=6cm,HB=4cm,HC=9cm
Bài4:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=4cm,HB=2cm,HC=8cm
Bài5:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=4cm,HB=2cm,HC=8cm.Tính BC,AH,AC
Bài6:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=6cm,AC=8cm và \(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\)Tính HB,HC
Ai không vẽ hình mk báo cáo hết
Cho \(\Delta\)\(ABC\) vuông tại A. AB = 6, \(\widehat{B}\) \(=30^0\). Phân giác của góc C cắt AB tại D. Tính AD và BD.
(ko cần vẽ hình) Cho ΔABC vuông tại A. Có D ϵ AB, E ϵ AC
A) Chứng minh CD2 - CB2 = ED2 - EB2
Giải chi tiết và vẽ hình giúp mình ạ Bài 3 Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. M là trung điểm của BC.
a) Chứng minh AM là tia phân giác của góc A.
b) Chứng minh AM vuông góc BC. c) Tính AM
d ) Từ M vẽ ME vuông góc AB (E thuộc AB) và MF vuông góc AC (F thuộc AC). Tam giác MEF là tam giác gì ? Vì sao ?
Cho tam giác ABC vuông tại A có AB=5cm,BC=10cm. 1:tính độ dài AC. 2:Vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. Chứng minh tam giác ABC=tam giác EBD và AE vuông góc với BD. 3:Gọi giao điểm của 2 đường thẳng ED và BA là F. Chứng minh :tam giác ABC=tam giác AFC.
Cho AABC Vuông tại A,
a)Tính AC. biết AB=6cm, BC=10cm.
b)Tia phân giác của góc B cắt cạnh AC tại D. Kẻ DE vuông góc BC (E
thuộc BC). Gọi K là giao điểm của tia ED và đường thẳng AB.
Chứng minh: AABD = AEBD.
c/ chứng minh KDC là tam giác cân
Cho ΔABC. Lấy điểm M bất kì nằm trong ΔABC. Kẻ MD, ME, MF lần lượt vuông góc với BC, AC, AB tại D, E, F. Chứng minh rằng AF^2 + BD^2 + EC^2 = AE^2 + FB^2 + DC^2.