Bài 7: Định lí Pitago

MB

Giải chi tiết và vẽ hình giúp mình ạ Bài 3  Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. M là trung điểm của BC.

          a) Chứng minh AM là tia phân giác của góc A.

b) Chứng minh AM vuông góc BC.                  c) Tính  AM

       d ) Từ M vẽ ME vuông góc AB (E thuộc AB) và MF vuông góc AC (F thuộc AC). Tam giác MEF là tam giác gì ? Vì sao ?

NT
2 tháng 2 2022 lúc 13:09

a) Vì \(AB=AC\) (giả thiết)

\(\Rightarrow\Delta ABC\) cân tại A

Mà \(AM\) là đường trung tuyến (giả thiết)

\(\Rightarrow AM\) cũng là đường phân giác \(\widehat{A}\) 

b) Vì \(\Delta ABC\) cân tại A (cmt)

Mà \(AM\) là đường phân giác (cmt)

\(\Rightarrow AM\) là đường trung trực \(BC\)

\(\Rightarrow AM\perp BC\)

c) Xét \(\Delta AMC\left(\widehat{M}=90^o\right)\) có:

\(AC^2=AM^2+MC^2\) (định lí pitago)

\(\Rightarrow AM=\sqrt{AC^2-MC^2}=\sqrt{5^2-\left(\dfrac{6}{2}\right)^2}=4\left(cm\right)\)

d) Xét \(\Delta AME\left(\widehat{E}=90^o\right)\) và \(\Delta AMF\left(\widehat{F}=90^o\right)\) có:

\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{EAF}\))

\(AM\) là cạnh chung

\(\Rightarrow\Delta AME=\Delta AMF\left(ch.gn\right)\)

\(\Rightarrow ME=MF\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta MEF\) cân tại \(M\)

Bình luận (0)
NT
2 tháng 2 2022 lúc 13:13

a, Xét tam giác ABC có : AB = AC 

Vậy tam giác ABC cân tại A

Lại có M là trung điểm BC hay AM là trung tuyến 

=> AM đồng thời là đường phân giác ^A

b, Xét tam giác ABC cân tại A

AM là đường trung tuyến đồng thời là đường cao 

hay AM vuông BC 

c, Vì M là trung tuyến BC => BM = BC/2 = 6/2 = 3 cm 

Theo định lí Pytago tam giác ABM vuông tại M

\(AM=\sqrt{AB^2-BM^2}=4cm\)

d, Xét tan giác AFM và tam giác AEM có : 

^AFM = ^AEM = 900

AM _ chung 

^FAM = ^EAM ( AM là phân giác )

Vậy tam giác AFM = tam giác AEM ( ch - gn ) 

=> FM = EM ( 2 cạnh tương ứng )

Xét tam giác MEF có FM = EM 

Vậy tam giác MEF cân tại M 

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
CT
Xem chi tiết
TN
Xem chi tiết
NX
Xem chi tiết
TL
Xem chi tiết
TD
Xem chi tiết
TH
Xem chi tiết
CP
Xem chi tiết
CP
Xem chi tiết