LV

cho hình chóp đều SABCD. Cạnh đáy là 2a căn 2 tâm O. Mặt bên tạo với đáy 1 góc là 45°. Tính V với V là thể tích mặt cầu ngoại tiếp hình chóp

NL
24 tháng 8 2021 lúc 20:55

Gọi M là trung điểm AB \(\Rightarrow\widehat{SMO}=45^0\)

\(OM=\dfrac{1}{2}AB=a\sqrt{2}\)

\(SO=OM.tan45^0=a\sqrt{2}\)

\(OA=\dfrac{1}{2}AC=2a\)

\(\Rightarrow SA=\sqrt{SO^2+OA^2}=a\sqrt{6}\)

\(\Rightarrow R=\dfrac{SA^2}{2SO}=\dfrac{3a\sqrt{2}}{2}\)

\(V=\dfrac{4}{3}\pi R^3=9\sqrt{2}\pi a^3\)

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
PB
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết