LV

cho hình chóp SABC đáy là tam giác vuông tại A, AB=a,AC=a căn 3, cạnh SA=2a. có SA vuông góc với đáy. Thể tích mặt cầu ngoại tiếp hình chóp là V. Tính V

NL
24 tháng 8 2021 lúc 22:02

\(BC=\sqrt{AB^2+AC^2}=2a\)

Gọi M là trung điểm BC \(\Rightarrow AM=\dfrac{1}{2}BC=a\)

GỌi N là trung điểm SA \(\Rightarrow AN=\dfrac{1}{2}SA=a\)

Dựng hình chữ nhật AMIN \(\Rightarrow\) I là tâm mặt cầu ngoại tiếp

\(R=IA=\sqrt{AM^2+AN^2}=a\sqrt{2}\)

\(\Rightarrow V=\dfrac{4}{3}\pi R^3=...\)

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
KT
Xem chi tiết