LV

Cho hình chóp đều SABC cạnh đáy a. Mặt bên tạo với đáy 1 góc 45°. Thể tích của mặt cầu ngoại tiếp hình chóp là V .Tính V

NL
24 tháng 8 2021 lúc 20:20

Gọi O là tâm đáy, M là trung điểm AB

\(OA=\dfrac{a\sqrt{3}}{3}\)  ; \(OM=\dfrac{1}{2}OA=\dfrac{a\sqrt{3}}{6}\)

\(\widehat{SMO}=45^0\Rightarrow SO=OM=\dfrac{a\sqrt{3}}{6}\)

\(SA=\sqrt{SO^2+OA^2}=\dfrac{a\sqrt{15}}{6}\)

\(\Rightarrow R=\dfrac{SA^2}{2SO}=\dfrac{5a\sqrt{3}}{12}\)

\(V=\dfrac{4}{3}\pi R^3=\dfrac{125\pi a^3\sqrt{3}}{432}\)

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết