Bài 10: Đường thẳng song song với một đường thẳng cho trước

NA

Cho góc vuông xOy, điểm A trên tia Oy. Điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào?

DN
24 tháng 8 2018 lúc 19:23

Đường thẳng song song với một đường thẳng cho trước

Vì điểm C đối xứng với điểm A qua điểm B ⇒ BA = BC

Kẻ CH ⊥ Ox

Xét hai tam giác vuông AOB và CHB:

\(\widehat{AOB}=\widehat{CHB}=90^0\)

BA = BC (chứng minh trên)

\(\widehat{ABO}=\widehat{CBH}\) (đối đỉnh)

Do đó: ∆ AOB = ∆ CHB (cạnh huyền, góc nhọn) ⇒ CH = AO

A, O cố định ⇒ OA không đổi nên CH không đổi.

C thay đổi cách Ox một khoảng bằng OA không đổi nên C chuyển động trên đường thẳng song song với Ox, cách Ox một khoảng OA.

Khi B trùng O thì C trùng với điểm K đối xứng với A qua điểm O.

Vậy C chuyển động trên tia Km // Ox, cách Ox một khoảng không đổi bằng OA.

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
NN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NA
Xem chi tiết
SB
Xem chi tiết
SK
Xem chi tiết