Bài 7: Tỉ lệ thức

NH

cho \(\frac{a}{b}=\frac{c}{d}\) . Cm \(\frac{7a^2+5ab}{7a^2-10b^2}=\frac{3c^2+5cd}{7c^2-10d}\)

AH
6 tháng 7 2019 lúc 21:50

Lời giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)

Khi đó :

\(\frac{3a^2+5ab}{7a^2-10b^2}=\frac{3(bt)^2+5.bt.b}{7(bt)^2-10b^2}=\frac{b^2(3t^2+5t)}{b^2(7t^2-10)}=\frac{3t^2+5t}{7t^2-10}\)

\(\frac{3c^2+5cd}{7c^2-10d^2}=\frac{3(dt)^2+5dt.d}{7(dt)^2-10d^2}=\frac{d^2(3t^2+5t)}{d^2(7t^2-10)}=\frac{3t^2+5t}{7t^2-10}\)

\(\Rightarrow \frac{3a^2+5ab}{7a^2-10b^2}=\frac{3c^2+5cd}{7c^2-10d^2}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NC
Xem chi tiết
NK
Xem chi tiết
NK
Xem chi tiết
NH
Xem chi tiết
HL
Xem chi tiết