cho đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn sao cho AM < MB. gọi M' là điểm đối xứng của M qua AB và S là giao điểm của hai tia BM, M'A. gọi P là chân đường vuông góc kẻ từ S đến AB
a. chứng minh bốn điểm A,M,S,P cùng nằm trên 1 đường tròn
b. gọi S' là giao điểm của MA và SP. chứng minh \(\Delta PS'M\) cân
c. chứng minh PM là tiếp tuyến của đường tròn tâm O
Giúp mik với :((( Cho đường tròn tâm O bán kính R và hai đường kính AB, CD vuông góc với nhau. Điểm M bất kì thuộc cung nhỏ BC (với M khác B và C). Gọi I là giao điểm của AM và BC, J là hình chiếu của I trên AB. Chứng minh rằng: a) Tứ giác BMIJ là tứ giác nội tiếp b) JI là phân giác của góc CJM c) J, M, D thẳng hàng
Nếu đc thì các bạn vẽ hình giúp mik với ;-;
Mik cảm ơn ;-;
Cho nửa đường tròn (O) đường kính BC. Điểm A thuộc cung BC (AB<AC). Gọi E là điểm đối xứng với B qua A. a) Tam giác BCE là tam giác gì? b) Gọi D là giao điểm của CE với nửa đường tròn. Kẻ tiếp tuyến Bx với nửa đường tròn (Bx và A cùng phía với BC). Chứng minh BA là tia phân giác của góc DBx c) CA cắt BD, Bx theo thứ tự ở I, K. Tứ giác BKEI là hình gì?
Cho đường tròn tâm (O) đường kính AB. Gọi M là điểm thuộc cung AB (M≠≠A, M≠≠B) và I là điểm thuộc đoạn OA (I≠≠A, I≠≠O). Trên nửa mặt phẳng bờ AB có chứa điểm M, kẻ các tia tiếp tuyến Ax, By với đường tròn (O). Qua M kẻ đường thẳng vuông góc với IM, đường thẳng này cắt Ax, By lần lượt tại C,D. Gọi M là giao điểm của AM với IC, F là giao điểm của BM với ID. Chứng minh rằng:
a, Tứ giác MIEF là tư giác nội tiếp.
b, EF song song vớiAB.
c,OM là tiếp tuyến chung của đươnmg tròn ngoại tiếp tam giác CEM và DFM
Đường tròn tâm (O) bán kính AB. Trên đường thẳng AB lấy điểm C sao cho B nằm giữa A,C. Kẻ tiếp tuyến CK với đường tròn (O) (K là tiếp điểm), tiếp tuyến tại A của đường tròn (O) cắt đường thẳng CK tại H. Gọi I là giao điểm OH và AK, J là giao điểm của BH với đường tròn (O) (J không trùng với B) a) Chứng minh AJ.HB = AH.AB b) Chứng minh 4 điểm B, O, I, J cùng nằm trên một đường tròn.
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD
Từ một điểm A ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm). trên tia đối của tia BC, lấy điểm D. Gọi E là giao điểm của DO vá AC . Qua E , vẽ tiếp tuyến thứ hai với đường tròn (O), có tiếp điểm là M ; tiếp tuyến này cắt đường thẳng AB ở K.
a. Chứng minh bốn điểm D ,B, ,O, M cùng thuộc một đường tròn.
b. Chứng minh D ,B, O, M ,K cùng thuộc một đường tròn.
Cho đường tròn (O;R) và dây CD có trung điểm H. Trên tia đối DC lấy S . Từ S vẽ 2 tiếp tuyến SA và SB đến (O) với A,B là tiếp điểm.
a) E là giao điểm SO và AB. F là giao điểm OH và AB. Chứng minh EFHS là tứ giác nội tiếp
b) OH.OF = OE.OS
c) Cho SO=3R, CD=R√3. Tính SF