Bài 7: Tỉ lệ thức

NT

cho a,b,c,d >0 A=\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

Tìm phần nguyên của A

AH
25 tháng 1 2020 lúc 20:49

Lời giải:

Ta thấy, với mọi $a,b,c,d>0$ ta có:

$\frac{a}{a+b+c}>\frac{a}{a+b+c+d}$

$\frac{b}{b+c+d}>\frac{b}{b+c+d+a}$

$\frac{c}{c+d+a}>\frac{c}{c+d+a+b}$

$\frac{d}{d+a+b}>\frac{d}{d+a+b+c}$

Cộng theo vế:

$\Rightarrow A>\frac{a+b+c+d}{a+b+c+d}$ hay $A>1(1)$

-----------------------

Mặt khác:

Xét hiệu:

$\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0$

$\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}$

Tương tự:

$\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}$

$\frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}$

$\frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}$

Cộng theo vế:

$A< \frac{2(a+b+c+d)}{a+b+c+d}$ hay $A< 2(2)$

Từ $(1);(2)\Rightarrow 1< A< 2$

$\Rightarrow$ \(\left \lfloor A\right \rfloor=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
NS
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NG
Xem chi tiết