Bài 4: Những hằng đẳng thức đáng nhớ (Tiếp)

NA

Cho a+b+c=1 và a3+b3+c3=1. Tính S=a1981+b1981+c1981

MS
2 tháng 11 2018 lúc 18:02

Cho thêm cái \(a^2+b^2+c^2=1\) là ez rồi

\(a+b+c=1\Leftrightarrow\left[\left(a+b\right)+c\right]^3=1\)

\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=1\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+3\left(a^2+2ab+b^2\right)c+3ac^2+3bc^2+c^3=1\)

\(\Leftrightarrow\left(a^3+b^3+c^3\right)+3\left(a^2b+ab^2+a^2c+2abc+b^2c+ac^2+bc^2\right)=1\)

\(\Leftrightarrow a^2b+ab^2+a^2c+abc+abc+b^2c+ac^2+bc^2=0\)

\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Xét \(a=-b\). Ta có theo đề bài \(a+b+c=1\Leftrightarrow c=1\)

\(a=-b\Leftrightarrow a^{1981}=-b^{1981}\)

\(S=a^{1981}+b^{1981}+c^{1981}=c^{1981}=1^{1981}=1\)

Bình luận (0)
NA
27 tháng 7 2017 lúc 23:12

Các bạn giúp mình nha.Mình gấp lắm.

Bình luận (0)

Các câu hỏi tương tự
CN
Xem chi tiết
TH
Xem chi tiết
LM
Xem chi tiết
SH
Xem chi tiết
VH
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết